forked from vllm-project/vllm
-
Notifications
You must be signed in to change notification settings - Fork 76
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Signed-off-by: Chendi Xue <[email protected]>
- Loading branch information
Showing
2 changed files
with
121 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,57 @@ | ||
from vllm import LLM, SamplingParams | ||
|
||
import argparse | ||
import os | ||
|
||
# Parse the command-line arguments. | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument("--model", type=str, default="/software/data/DeepSeek-R1/", help="The model path.") | ||
parser.add_argument("--tokenizer", type=str, default="deepseek-ai/DeepSeek-R1", help="The model path.") | ||
#parser.add_argument("--model", type=str, default="/data/models/DeepSeek-R1-bf16-small/", help="The model path.") | ||
#parser.add_argument("--tokenizer", type=str, default="opensourcerelease/DeepSeek-R1-bf16", help="The model path.") | ||
parser.add_argument("--tp_size", type=int, default=8, help="The number of threads.") | ||
args = parser.parse_args() | ||
|
||
os.environ["VLLM_SKIP_WARMUP"] = "true" | ||
os.environ["HABANA_VISIBLE_DEVICES"] = "ALL" | ||
os.environ["PT_HPU_ENABLE_LAZY_COLLECTIVES"] = "true" | ||
os.environ["VLLM_RAY_DISABLE_LOG_TO_DRIVER"] = "1" | ||
os.environ["RAY_IGNORE_UNHANDLED_ERRORS"] = "1" | ||
|
||
|
||
# Sample prompts. | ||
prompts = [ | ||
"Hello, my name is", | ||
"The president of the United States is", | ||
"The capital of France is", | ||
"The future of AI is", | ||
] | ||
# Create a sampling params object. | ||
sampling_params = SamplingParams(temperature=0, max_tokens=50) | ||
model = args.model | ||
if args.tp_size == 1: | ||
llm = LLM( | ||
model=model, | ||
tokenizer=args.tokenizer, | ||
trust_remote_code=True, | ||
dtype="bfloat16", | ||
) | ||
else: | ||
llm = LLM( | ||
model=model, | ||
tokenizer=args.tokenizer, | ||
tensor_parallel_size=args.tp_size, | ||
distributed_executor_backend='ray', | ||
trust_remote_code=True, | ||
max_model_len=1024, | ||
dtype="bfloat16", | ||
) | ||
|
||
# Generate texts from the prompts. The output is a list of RequestOutput objects | ||
# that contain the prompt, generated text, and other information. | ||
outputs = llm.generate(prompts, sampling_params) | ||
# Print the outputs. | ||
for output in outputs: | ||
prompt = output.prompt | ||
generated_text = output.outputs[0].text | ||
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,64 @@ | ||
#!/bin/bash | ||
tp_parrallel=8 | ||
bs=32 | ||
in_len=1024 | ||
out_len=1024 | ||
multi_step=1 | ||
total_len=$((in_len + out_len)) | ||
VLLM_DECODE_BLOCK_BUCKET_MIN=$((in_len * bs / 128)) | ||
VLLM_DECODE_BLOCK_BUCKET_MAX=$((total_len * bs / 128)) | ||
|
||
model="/software/data/DeepSeek-R1/" | ||
tokenizer="/software/data/DeepSeek-R1/" | ||
model_name="DeepSeek-R1" | ||
|
||
HABANA_VISIBLE_DEVICES="ALL" \ | ||
PT_HPU_ENABLE_LAZY_COLLECTIVES="true" \ | ||
VLLM_RAY_DISABLE_LOG_TO_DRIVER="1" \ | ||
RAY_IGNORE_UNHANDLED_ERRORS="1" \ | ||
VLLM_PROMPT_BS_BUCKET_MIN=1 \ | ||
VLLM_PROMPT_BS_BUCKET_MAX=${bs} \ | ||
VLLM_PROMPT_SEQ_BUCKET_MIN=${in_len} \ | ||
VLLM_PROMPT_SEQ_BUCKET_MAX=${in_len} \ | ||
VLLM_DECODE_BS_BUCKET_MIN=${bs} \ | ||
VLLM_DECODE_BS_BUCKET_MAX=${bs} \ | ||
VLLM_DECODE_BLOCK_BUCKET_MIN=${VLLM_DECODE_BLOCK_BUCKET_MIN} \ | ||
VLLM_DECODE_BLOCK_BUCKET_MAX=${VLLM_DECODE_BLOCK_BUCKET_MAX} \ | ||
python -m vllm.entrypoints.openai.api_server \ | ||
--port 8080 \ | ||
--model ${model} \ | ||
--tensor-parallel-size ${tp_parrallel} \ | ||
--max-num-seqs ${bs} \ | ||
--disable-log-requests \ | ||
--dtype bfloat16 \ | ||
--use-v2-block-manager \ | ||
--num_scheduler_steps ${multi_step}\ | ||
--max-model-len 2048 \ | ||
--max-num-batched-tokens 2048 \ | ||
--distributed_executor_backend ray \ | ||
--trust_remote_code 2>&1 | tee benchmark_logs/serving.log & | ||
pid=$(($!-1)) | ||
|
||
until [[ "$n" -ge 100 ]] || [[ $ready == true ]]; do | ||
n=$((n+1)) | ||
if grep -q "Uvicorn running on" benchmark_logs/serving.log; then | ||
break | ||
fi | ||
sleep 5s | ||
done | ||
sleep 5s | ||
echo ${pid} | ||
|
||
num_prompts=32 | ||
request_rate=1 | ||
start_time=$(date +%s) | ||
echo "Start to benchmark" | ||
python benchmarks/benchmark_serving.py --backend vllm --model ${model} --tokenizer ${tokenizer} --dataset-name sonnet --dataset-path benchmarks/sonnet.txt --request-rate ${request_rate} --num-prompts ${num_prompts} --port 8080 --sonnet-input-len ${in_len} --sonnet-output-len ${out_len} --sonnet-prefix-len 100 \ | ||
--save-result| tee benchmark_logs/static-online-gaudi3-TPparallel${tp_parrallel}-multistep${multi_step}_nprompt${num_prompts}_rrate${request_rate}_bs${bs}_i${in_len}_o${out_len}.log | ||
end_time=$(date +%s) | ||
echo "Time elapsed: $((end_time - start_time))s" | ||
|
||
sleep 10 | ||
|
||
kill ${pid} | ||
#--backend openai-chat --endpoint "v1/chat/completions" |