Skip to content

Commit

Permalink
[Citation-Bot] update citation automatically
Browse files Browse the repository at this point in the history
  • Loading branch information
citation-bot committed Oct 27, 2024
1 parent cbdf217 commit 26ceb87
Show file tree
Hide file tree
Showing 2 changed files with 6 additions and 6 deletions.
2 changes: 1 addition & 1 deletion .github/citation/citation.json
Original file line number Diff line number Diff line change
@@ -1 +1 @@
{"Injecting Logical Constraints into Neural Networks via Straight-Through Estimators": {"citation": 23, "last update": "2024-10-25"}, "Rewriting a Deep Generative Model": {"citation": 128, "last update": "2024-10-25"}, "DeepProbLog: Neural Probabilistic Logic Programming": {"citation": 628, "last update": "2024-10-25"}, "Guided Open Vocabulary Image Captioning with Constrained Beam Search": {"citation": 260, "last update": "2024-10-26"}, "DeepEdit: Knowledge Editing as Decoding with Constraints": {"citation": 15, "last update": "2024-10-26"}, "Don't Pour Cereal into Coffee: Differentiable Temporal Logic for Temporal Action Segmentation": {"citation": 27, "last update": "2024-10-26"}, "VerSe: A Vertebrae Labelling and Segmentation Benchmark for Multi-detector CT Images": {"citation": 244, "last update": "2024-10-26"}, "MultiplexNet: Towards Fully Satisfied Logical Constraints in Neural Networks": {"citation": 57, "last update": "2024-10-26"}, "Interpretability Beyond Feature Attribution:Quantitative Testing with Concept Activation Vectors (TCAV)": {"citation": 2059, "last update": "2024-10-26"}, "Label-free Concept Bottleneck Models": {"citation": 119, "last update": "2024-10-26"}, "Language in a Bottle: Language Model Guided Concept Bottlenecks for Interpretable Image Classification": {"citation": 157, "last update": "2024-10-26"}, "Editing a classifier by rewriting its prediction rules": {"citation": 78, "last update": "2024-10-26"}, "Concept Bottleneck Models": {"citation": 790, "last update": "2024-10-26"}, "Interactive Concept Bottleneck Models": {"citation": 47, "last update": "2024-10-26"}, "Promises and Pitfalls of Black-Box Concept Learning Models": {"citation": 82, "last update": "2024-10-26"}, "Addressing Leakage in Concept Bottleneck Models": {"citation": 58, "last update": "2024-10-26"}, "CommonGen: A Constrained Text Generation Challenge for Generative Commonsense Reasoning": {"citation": 357, "last update": "2024-10-26"}, "POST-HOC CONCEPT BOTTLENECK MODELS": {"citation": 180, "last update": "2024-10-26"}, "Dividing and Conquering a BlackBox to a Mixture of Interpretable Models: Route, Interpret, Repeat": {"citation": 9, "last update": "2024-10-26"}, "A Semantic Loss Function for Deep Learning with Symbolic Knowledge": {"citation": 544, "last update": "2024-10-26"}, "Neurologic decoding:(un) supervised neural text generation with predicate logic constraints": {"citation": 130, "last update": "2024-10-26"}, "A review of some techniques for inclusion of domain-knowledge into deep neural networks": {"citation": 152, "last update": "2024-10-26"}, "Informed machine learning-a taxonomy and survey of integrating prior knowledge into learning systems": {"citation": 785, "last update": "2024-10-26"}, "The Connectionist Inductive Learning and Logic Programming System": {"citation": 253, "last update": "2024-10-26"}, "Harnessing Deep Neural Networks with Logic Rules": {"citation": 778, "last update": "2024-10-26"}, "Deep Learning with Logical Constraints": {"citation": 68, "last update": "2024-10-26"}, "A Pseudo-Semantic Loss for Autoregressive Models with Logical Constraints": {"citation": 8, "last update": "2024-10-26"}, "Hyper-class Augmented and Regularized Deep Learning for Fine-grained Image Classification": {"citation": 236, "last update": "2024-10-26"}}
{"Neurologic decoding:(un) supervised neural text generation with predicate logic constraints": {"citation": 130, "last update": "2024-10-26"}, "A review of some techniques for inclusion of domain-knowledge into deep neural networks": {"citation": 152, "last update": "2024-10-26"}, "Informed machine learning-a taxonomy and survey of integrating prior knowledge into learning systems": {"citation": 785, "last update": "2024-10-26"}, "The Connectionist Inductive Learning and Logic Programming System": {"citation": 253, "last update": "2024-10-26"}, "Harnessing Deep Neural Networks with Logic Rules": {"citation": 778, "last update": "2024-10-26"}, "Deep Learning with Logical Constraints": {"citation": 68, "last update": "2024-10-26"}, "A Pseudo-Semantic Loss for Autoregressive Models with Logical Constraints": {"citation": 8, "last update": "2024-10-26"}, "Hyper-class Augmented and Regularized Deep Learning for Fine-grained Image Classification": {"citation": 236, "last update": "2024-10-26"}, "Injecting Logical Constraints into Neural Networks via Straight-Through Estimators": {"citation": 23, "last update": "2024-10-27"}, "Rewriting a Deep Generative Model": {"citation": 128, "last update": "2024-10-27"}, "DeepProbLog: Neural Probabilistic Logic Programming": {"citation": 629, "last update": "2024-10-27"}, "Guided Open Vocabulary Image Captioning with Constrained Beam Search": {"citation": 260, "last update": "2024-10-27"}, "DeepEdit: Knowledge Editing as Decoding with Constraints": {"citation": 15, "last update": "2024-10-27"}, "Don't Pour Cereal into Coffee: Differentiable Temporal Logic for Temporal Action Segmentation": {"citation": 27, "last update": "2024-10-27"}, "VerSe: A Vertebrae Labelling and Segmentation Benchmark for Multi-detector CT Images": {"citation": 244, "last update": "2024-10-27"}, "MultiplexNet: Towards Fully Satisfied Logical Constraints in Neural Networks": {"citation": 57, "last update": "2024-10-27"}, "Interpretability Beyond Feature Attribution:Quantitative Testing with Concept Activation Vectors (TCAV)": {"citation": 2062, "last update": "2024-10-27"}, "Label-free Concept Bottleneck Models": {"citation": 120, "last update": "2024-10-27"}, "Language in a Bottle: Language Model Guided Concept Bottlenecks for Interpretable Image Classification": {"citation": 157, "last update": "2024-10-27"}, "Editing a classifier by rewriting its prediction rules": {"citation": 78, "last update": "2024-10-27"}, "Concept Bottleneck Models": {"citation": 791, "last update": "2024-10-27"}, "Interactive Concept Bottleneck Models": {"citation": 47, "last update": "2024-10-27"}, "Promises and Pitfalls of Black-Box Concept Learning Models": {"citation": 82, "last update": "2024-10-27"}, "Addressing Leakage in Concept Bottleneck Models": {"citation": 58, "last update": "2024-10-27"}, "CommonGen: A Constrained Text Generation Challenge for Generative Commonsense Reasoning": {"citation": 357, "last update": "2024-10-27"}, "POST-HOC CONCEPT BOTTLENECK MODELS": {"citation": 181, "last update": "2024-10-27"}, "Dividing and Conquering a BlackBox to a Mixture of Interpretable Models: Route, Interpret, Repeat": {"citation": 9, "last update": "2024-10-27"}, "A Semantic Loss Function for Deep Learning with Symbolic Knowledge": {"citation": 545, "last update": "2024-10-27"}}
10 changes: 5 additions & 5 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -31,21 +31,21 @@ A list of awesome resources related to constraint learning
|NIPS 2023|A Pseudo-Semantic Loss for Autoregressive Models with Logical Constraints|UCLA| [[paper]](https://arxiv.org/pdf/2312.03905.pdf)![Scholar citations](https://img.shields.io/badge/Citations-8-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)| [[code]](https://github.com/UCLA-StarAI/PseudoSL)![GitHub stars](https://img.shields.io/github/stars/UCLA-StarAI/PseudoSL.svg?logo=github&label=Stars)|
|ACL 2016|Harnessing Deep Neural Networks with Logic Rules|CMU| [[paper]](https://arxiv.org/pdf/1603.06318.pdf)![Scholar citations](https://img.shields.io/badge/Citations-778-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)| [[code]](https://github.com/ZhitingHu/logicnn)![GitHub stars](https://img.shields.io/github/stars/ZhitingHu/logicnn.svg?logo=github&label=Stars)|
|Applied Intelligence 1999|The Connectionist Inductive Learning and Logic Programming System|IC| [[paper]](https://link.springer.com/article/10.1023/A:1008328630915)![Scholar citations](https://img.shields.io/badge/Citations-253-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)||
|ICML 2018|A Semantic Loss Function for Deep Learning with Symbolic Knowledge|UCLA| [[paper]](https://proceedings.mlr.press/v80/xu18h/xu18h.pdf)![Scholar citations](https://img.shields.io/badge/Citations-544-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)| [[code]](https://github.com/UCLA-StarAI/Semantic-Loss)![GitHub stars](https://img.shields.io/github/stars/UCLA-StarAI/Semantic-Loss.svg?logo=github&label=Stars)|
|ICML 2018|A Semantic Loss Function for Deep Learning with Symbolic Knowledge|UCLA| [[paper]](https://proceedings.mlr.press/v80/xu18h/xu18h.pdf)![Scholar citations](https://img.shields.io/badge/Citations-545-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)| [[code]](https://github.com/UCLA-StarAI/Semantic-Loss)![GitHub stars](https://img.shields.io/github/stars/UCLA-StarAI/Semantic-Loss.svg?logo=github&label=Stars)|
|NAACL 2021|Neurologic decoding:(un) supervised neural text generation with predicate logic constraints|UW| [[paper]](https://arxiv.org/pdf/2010.12884.pdf)![Scholar citations](https://img.shields.io/badge/Citations-130-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)| [[code]](https://github.com/GXimingLu/neurologic_decoding)![GitHub stars](https://img.shields.io/github/stars/GXimingLu/neurologic_decoding.svg?logo=github&label=Stars)|
|EMNLP 2017|Guided Open Vocabulary Image Captioning with Constrained Beam Search|The Australian National University| [[paper]](https://aclanthology.org/D17-1098.pdf)![Scholar citations](https://img.shields.io/badge/Citations-260-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)| [[code]](https://github.com/nocaps-org/updown-baseline)![GitHub stars](https://img.shields.io/github/stars/nocaps-org/updown-baseline.svg?logo=github&label=Stars)|
|NIPS 2022|Don't Pour Cereal into Coffee: Differentiable Temporal Logic for Temporal Action Segmentation|NUS| [[paper]](https://diff-tl.github.io/assets/docs/dtl_neurips2022.pdf)![Scholar citations](https://img.shields.io/badge/Citations-27-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)| [[code]](https://github.com/ZiweiXU/DTL-action-segmentation)![GitHub stars](https://img.shields.io/github/stars/ZiweiXU/DTL-action-segmentation.svg?logo=github&label=Stars)|
|AAAI 2021|MultiplexNet: Towards Fully Satisfied Logical Constraints in Neural Networks|University of Edinburgh| [[paper]](https://arxiv.org/pdf/2111.01564.pdf)![Scholar citations](https://img.shields.io/badge/Citations-57-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)| [[code]](https://github.com/NickHoernle/semantic_loss)![GitHub stars](https://img.shields.io/github/stars/NickHoernle/semantic_loss.svg?logo=github&label=Stars)|
|NIPS 2018|DeepProbLog: Neural Probabilistic Logic Programming|KU Leuven| [[paper]](https://arxiv.org/pdf/1805.10872.pdf)![Scholar citations](https://img.shields.io/badge/Citations-628-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)| [[code]](https://github.com/ML-KULeuven/deepproblog)![GitHub stars](https://img.shields.io/github/stars/ML-KULeuven/deepproblog.svg?logo=github&label=Stars)|
|NIPS 2018|DeepProbLog: Neural Probabilistic Logic Programming|KU Leuven| [[paper]](https://arxiv.org/pdf/1805.10872.pdf)![Scholar citations](https://img.shields.io/badge/Citations-629-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)| [[code]](https://github.com/ML-KULeuven/deepproblog)![GitHub stars](https://img.shields.io/github/stars/ML-KULeuven/deepproblog.svg?logo=github&label=Stars)|
|ICML 2022|Injecting Logical Constraints into Neural Networks via Straight-Through Estimators|Arizona State University| [[paper]](https://arxiv.org/pdf/2307.04347.pdf)![Scholar citations](https://img.shields.io/badge/Citations-23-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)| [[code]](https://github.com/azreasoners/cl-ste)![GitHub stars](https://img.shields.io/github/stars/azreasoners/cl-ste.svg?logo=github&label=Stars)|
### Concept bottleneck models
| Venue | Title | Affiliation |       Link       |   Source   |
| :---: | :---: | :---------: | :---: | :----: |
|ICML 2020|Concept Bottleneck Models|Standard University| [[paper]](https://arxiv.org/pdf/2007.04612.pdf)![Scholar citations](https://img.shields.io/badge/Citations-790-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)| [[code]](https://github.com/yewsiang/ConceptBottleneck)![GitHub stars](https://img.shields.io/github/stars/yewsiang/ConceptBottleneck.svg?logo=github&label=Stars)|
|ICLR 2023|POST-HOC CONCEPT BOTTLENECK MODELS|Standard University| [[paper]](https://arxiv.org/pdf/2205.15480.pdf)![Scholar citations](https://img.shields.io/badge/Citations-180-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)| [[code]](https://github.com/mertyg/post-hoc-cbm)![GitHub stars](https://img.shields.io/github/stars/mertyg/post-hoc-cbm.svg?logo=github&label=Stars)|
|ICML 2020|Concept Bottleneck Models|Standard University| [[paper]](https://arxiv.org/pdf/2007.04612.pdf)![Scholar citations](https://img.shields.io/badge/Citations-791-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)| [[code]](https://github.com/yewsiang/ConceptBottleneck)![GitHub stars](https://img.shields.io/github/stars/yewsiang/ConceptBottleneck.svg?logo=github&label=Stars)|
|ICLR 2023|POST-HOC CONCEPT BOTTLENECK MODELS|Standard University| [[paper]](https://arxiv.org/pdf/2205.15480.pdf)![Scholar citations](https://img.shields.io/badge/Citations-181-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)| [[code]](https://github.com/mertyg/post-hoc-cbm)![GitHub stars](https://img.shields.io/github/stars/mertyg/post-hoc-cbm.svg?logo=github&label=Stars)|
|ICML 2023|Dividing and Conquering a BlackBox to a Mixture of Interpretable Models: Route, Interpret, Repeat|BU| [[paper]](https://arxiv.org/pdf/2307.05350.pdf)![Scholar citations](https://img.shields.io/badge/Citations-9-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)| [[code]](https://github.com/batmanlab/ICML-2023-Route-interpret-repeat)![GitHub stars](https://img.shields.io/github/stars/batmanlab/ICML-2023-Route-interpret-repeat.svg?logo=github&label=Stars)|
|CVPR 2023|Language in a Bottle: Language Model Guided Concept Bottlenecks for Interpretable Image Classification|UPENN| [[paper]](https://openaccess.thecvf.com/content/CVPR2023/papers/Yang_Language_in_a_Bottle_Language_Model_Guided_Concept_Bottlenecks_for_CVPR_2023_paper.pdf)![Scholar citations](https://img.shields.io/badge/Citations-157-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)| [[code]](https://github.com/YueYANG1996/LaBo)![GitHub stars](https://img.shields.io/github/stars/YueYANG1996/LaBo.svg?logo=github&label=Stars)|
|ICLR 2023|Label-free Concept Bottleneck Models|UCSD| [[paper]](https://openreview.net/pdf?id=FlCg47MNvBA)![Scholar citations](https://img.shields.io/badge/Citations-119-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)| [[code]](https://github.com/Trustworthy-ML-Lab/Label-free-CBM)![GitHub stars](https://img.shields.io/github/stars/Trustworthy-ML-Lab/Label-free-CBM.svg?logo=github&label=Stars)|
|ICLR 2023|Label-free Concept Bottleneck Models|UCSD| [[paper]](https://openreview.net/pdf?id=FlCg47MNvBA)![Scholar citations](https://img.shields.io/badge/Citations-120-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)| [[code]](https://github.com/Trustworthy-ML-Lab/Label-free-CBM)![GitHub stars](https://img.shields.io/github/stars/Trustworthy-ML-Lab/Label-free-CBM.svg?logo=github&label=Stars)|
|AAAI 2023|Interactive Concept Bottleneck Models|Google| [[paper]](https://arxiv.org/pdf/2212.07430.pdf)![Scholar citations](https://img.shields.io/badge/Citations-47-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)| [[code]](https://github.com/google-research/google-research/tree/master/interactive_cbms)|
|NIPS 2022|Addressing Leakage in Concept Bottleneck Models|Harvard University| [[paper]](https://finale.seas.harvard.edu/sites/scholar.harvard.edu/files/finale/files/10494_addressing_leakage_in_concept_.pdf)![Scholar citations](https://img.shields.io/badge/Citations-58-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)| [[code]](https://github.com/dtak/addressing-leakage)![GitHub stars](https://img.shields.io/github/stars/dtak/addressing-leakage.svg?logo=github&label=Stars)|
|ICML 2021|Promises and Pitfalls of Black-Box Concept Learning Models|Harvard University| [[paper]](https://arxiv.org/pdf/2106.13314.pdf)![Scholar citations](https://img.shields.io/badge/Citations-82-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)||
Expand Down

0 comments on commit 26ceb87

Please sign in to comment.