Skip to content

Commit

Permalink
[Citation-Bot] update citation automatically
Browse files Browse the repository at this point in the history
  • Loading branch information
citation-bot committed May 5, 2024
1 parent 5853d76 commit b893ca1
Show file tree
Hide file tree
Showing 2 changed files with 10 additions and 10 deletions.
2 changes: 1 addition & 1 deletion .github/citation/citation.json
Original file line number Diff line number Diff line change
@@ -1 +1 @@
{"Hyper-class Augmented and Regularized Deep Learning for Fine-grained Image Classification": {"citation": 230, "last update": "2024-05-04"}, "Injecting Logical Constraints into Neural Networks via Straight-Through Estimators": {"citation": 19, "last update": "2024-05-04"}, "Rewriting a Deep Generative Model": {"citation": 108, "last update": "2024-05-04"}, "DeepProbLog: Neural Probabilistic Logic Programming": {"citation": 553, "last update": "2024-05-04"}, "Guided Open Vocabulary Image Captioning with Constrained Beam Search": {"citation": 239, "last update": "2024-05-04"}, "DeepEdit: Knowledge Editing as Decoding with Constraints": {"citation": 4, "last update": "2024-05-04"}, "Don't Pour Cereal into Coffee: Differentiable Temporal Logic for Temporal Action Segmentation": {"citation": 14, "last update": "2024-05-04"}, "VerSe: A Vertebrae Labelling and Segmentation Benchmark for Multi-detector CT Images": {"citation": 195, "last update": "2024-05-04"}, "MultiplexNet: Towards Fully Satisfied Logical Constraints in Neural Networks": {"citation": 44, "last update": "2024-05-04"}, "Interpretability Beyond Feature Attribution:Quantitative Testing with Concept Activation Vectors (TCAV)": {"citation": 1785, "last update": "2024-05-04"}, "Label-free Concept Bottleneck Models": {"citation": 57, "last update": "2024-05-04"}, "Language in a Bottle: Language Model Guided Concept Bottlenecks for Interpretable Image Classification": {"citation": 84, "last update": "2024-05-04"}, "Editing a classifier by rewriting its prediction rules": {"citation": 63, "last update": "2024-05-04"}, "Concept Bottleneck Models": {"citation": 590, "last update": "2024-05-04"}, "Interactive Concept Bottleneck Models": {"citation": 28, "last update": "2024-05-04"}, "Promises and Pitfalls of Black-Box Concept Learning Models": {"citation": 63, "last update": "2024-05-04"}, "Addressing Leakage in Concept Bottleneck Models": {"citation": 31, "last update": "2024-05-04"}, "CommonGen: A Constrained Text Generation Challenge for Generative Commonsense Reasoning": {"citation": 307, "last update": "2024-05-04"}, "POST-HOC CONCEPT BOTTLENECK MODELS": {"citation": 113, "last update": "2024-05-04"}, "Dividing and Conquering a BlackBox to a Mixture of Interpretable Models: Route, Interpret, Repeat": {"citation": 5, "last update": "2024-05-04"}, "A Semantic Loss Function for Deep Learning with Symbolic Knowledge": {"citation": 471, "last update": "2024-05-04"}, "Neurologic decoding:(un) supervised neural text generation with predicate logic constraints": {"citation": 114, "last update": "2024-05-04"}, "A review of some techniques for inclusion of domain-knowledge into deep neural networks": {"citation": 118, "last update": "2024-05-04"}, "Informed machine learning-a taxonomy and survey of integrating prior knowledge into learning systems": {"citation": 627, "last update": "2024-05-04"}, "The Connectionist Inductive Learning and Logic Programming System": {"citation": 241, "last update": "2024-05-04"}, "Harnessing Deep Neural Networks with Logic Rules": {"citation": 744, "last update": "2024-05-04"}, "Deep Learning with Logical Constraints": {"citation": 51, "last update": "2024-05-04"}, "A Pseudo-Semantic Loss for Autoregressive Models with Logical Constraints": {"citation": 0, "last update": "2024-05-04"}}
{"A review of some techniques for inclusion of domain-knowledge into deep neural networks": {"citation": 118, "last update": "2024-05-04"}, "Informed machine learning-a taxonomy and survey of integrating prior knowledge into learning systems": {"citation": 627, "last update": "2024-05-04"}, "The Connectionist Inductive Learning and Logic Programming System": {"citation": 241, "last update": "2024-05-04"}, "Harnessing Deep Neural Networks with Logic Rules": {"citation": 744, "last update": "2024-05-04"}, "Deep Learning with Logical Constraints": {"citation": 51, "last update": "2024-05-04"}, "A Pseudo-Semantic Loss for Autoregressive Models with Logical Constraints": {"citation": 0, "last update": "2024-05-04"}, "Hyper-class Augmented and Regularized Deep Learning for Fine-grained Image Classification": {"citation": 230, "last update": "2024-05-05"}, "Injecting Logical Constraints into Neural Networks via Straight-Through Estimators": {"citation": 19, "last update": "2024-05-05"}, "Rewriting a Deep Generative Model": {"citation": 109, "last update": "2024-05-05"}, "DeepProbLog: Neural Probabilistic Logic Programming": {"citation": 553, "last update": "2024-05-05"}, "Guided Open Vocabulary Image Captioning with Constrained Beam Search": {"citation": 239, "last update": "2024-05-05"}, "DeepEdit: Knowledge Editing as Decoding with Constraints": {"citation": 4, "last update": "2024-05-05"}, "Don't Pour Cereal into Coffee: Differentiable Temporal Logic for Temporal Action Segmentation": {"citation": 14, "last update": "2024-05-05"}, "VerSe: A Vertebrae Labelling and Segmentation Benchmark for Multi-detector CT Images": {"citation": 195, "last update": "2024-05-05"}, "MultiplexNet: Towards Fully Satisfied Logical Constraints in Neural Networks": {"citation": 44, "last update": "2024-05-05"}, "Interpretability Beyond Feature Attribution:Quantitative Testing with Concept Activation Vectors (TCAV)": {"citation": 1787, "last update": "2024-05-05"}, "Label-free Concept Bottleneck Models": {"citation": 58, "last update": "2024-05-05"}, "Language in a Bottle: Language Model Guided Concept Bottlenecks for Interpretable Image Classification": {"citation": 85, "last update": "2024-05-05"}, "Editing a classifier by rewriting its prediction rules": {"citation": 63, "last update": "2024-05-05"}, "Concept Bottleneck Models": {"citation": 593, "last update": "2024-05-05"}, "Interactive Concept Bottleneck Models": {"citation": 29, "last update": "2024-05-05"}, "Promises and Pitfalls of Black-Box Concept Learning Models": {"citation": 64, "last update": "2024-05-05"}, "Addressing Leakage in Concept Bottleneck Models": {"citation": 32, "last update": "2024-05-05"}, "CommonGen: A Constrained Text Generation Challenge for Generative Commonsense Reasoning": {"citation": 306, "last update": "2024-05-05"}, "POST-HOC CONCEPT BOTTLENECK MODELS": {"citation": 114, "last update": "2024-05-05"}, "Dividing and Conquering a BlackBox to a Mixture of Interpretable Models: Route, Interpret, Repeat": {"citation": 5, "last update": "2024-05-05"}, "A Semantic Loss Function for Deep Learning with Symbolic Knowledge": {"citation": 471, "last update": "2024-05-05"}, "Neurologic decoding:(un) supervised neural text generation with predicate logic constraints": {"citation": 114, "last update": "2024-05-05"}}
18 changes: 9 additions & 9 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,7 @@ A list of awesome resources related to constraint learning
### Benchmark
| Venue | Title | Affiliation |       Link       |   Source   |
| :---: | :---: | :---------: | :---: | :----: |
|EMNLP 2020|CommonGen: A Constrained Text Generation Challenge for Generative Commonsense Reasoning|USC| [[paper]](https://arxiv.org/pdf/1911.03705.pdf)![Scholar citations](https://img.shields.io/badge/Citations-307-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)| [[code]](https://github.com/INK-USC/CommonGen)![GitHub stars](https://img.shields.io/github/stars/INK-USC/CommonGen.svg?logo=github&label=Stars)|
|EMNLP 2020|CommonGen: A Constrained Text Generation Challenge for Generative Commonsense Reasoning|USC| [[paper]](https://arxiv.org/pdf/1911.03705.pdf)![Scholar citations](https://img.shields.io/badge/Citations-306-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)| [[code]](https://github.com/INK-USC/CommonGen)![GitHub stars](https://img.shields.io/github/stars/INK-USC/CommonGen.svg?logo=github&label=Stars)|
|Medical image analysis 2021|VerSe: A Vertebrae Labelling and Segmentation Benchmark for Multi-detector CT Images|Technical University of Munich| [[paper]](https://arxiv.org/abs/2001.09193)![Scholar citations](https://img.shields.io/badge/Citations-195-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)| [[code]](https://github.com/anjany/verse)![GitHub stars](https://img.shields.io/github/stars/anjany/verse.svg?logo=github&label=Stars)|
### Data Augmentation
| Venue | Title | Affiliation |       Link       |   Source   |
Expand All @@ -41,18 +41,18 @@ A list of awesome resources related to constraint learning
### Concept bottleneck models
| Venue | Title | Affiliation |       Link       |   Source   |
| :---: | :---: | :---------: | :---: | :----: |
|ICML 2020|Concept Bottleneck Models|Standard University| [[paper]](https://arxiv.org/pdf/2007.04612.pdf)![Scholar citations](https://img.shields.io/badge/Citations-590-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)| [[code]](https://github.com/yewsiang/ConceptBottleneck)![GitHub stars](https://img.shields.io/github/stars/yewsiang/ConceptBottleneck.svg?logo=github&label=Stars)|
|ICLR 2023|POST-HOC CONCEPT BOTTLENECK MODELS|Standard University| [[paper]](https://arxiv.org/pdf/2205.15480.pdf)![Scholar citations](https://img.shields.io/badge/Citations-113-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)| [[code]](https://github.com/mertyg/post-hoc-cbm)![GitHub stars](https://img.shields.io/github/stars/mertyg/post-hoc-cbm.svg?logo=github&label=Stars)|
|ICML 2020|Concept Bottleneck Models|Standard University| [[paper]](https://arxiv.org/pdf/2007.04612.pdf)![Scholar citations](https://img.shields.io/badge/Citations-593-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)| [[code]](https://github.com/yewsiang/ConceptBottleneck)![GitHub stars](https://img.shields.io/github/stars/yewsiang/ConceptBottleneck.svg?logo=github&label=Stars)|
|ICLR 2023|POST-HOC CONCEPT BOTTLENECK MODELS|Standard University| [[paper]](https://arxiv.org/pdf/2205.15480.pdf)![Scholar citations](https://img.shields.io/badge/Citations-114-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)| [[code]](https://github.com/mertyg/post-hoc-cbm)![GitHub stars](https://img.shields.io/github/stars/mertyg/post-hoc-cbm.svg?logo=github&label=Stars)|
|ICML 2023|Dividing and Conquering a BlackBox to a Mixture of Interpretable Models: Route, Interpret, Repeat|BU| [[paper]](https://arxiv.org/pdf/2307.05350.pdf)![Scholar citations](https://img.shields.io/badge/Citations-5-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)| [[code]](https://github.com/batmanlab/ICML-2023-Route-interpret-repeat)![GitHub stars](https://img.shields.io/github/stars/batmanlab/ICML-2023-Route-interpret-repeat.svg?logo=github&label=Stars)|
|CVPR 2023|Language in a Bottle: Language Model Guided Concept Bottlenecks for Interpretable Image Classification|UPENN| [[paper]](https://openaccess.thecvf.com/content/CVPR2023/papers/Yang_Language_in_a_Bottle_Language_Model_Guided_Concept_Bottlenecks_for_CVPR_2023_paper.pdf)![Scholar citations](https://img.shields.io/badge/Citations-84-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)| [[code]](https://github.com/YueYANG1996/LaBo)![GitHub stars](https://img.shields.io/github/stars/YueYANG1996/LaBo.svg?logo=github&label=Stars)|
|ICLR 2023|Label-free Concept Bottleneck Models|UCSD| [[paper]](https://openreview.net/pdf?id=FlCg47MNvBA)![Scholar citations](https://img.shields.io/badge/Citations-57-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)| [[code]](https://github.com/Trustworthy-ML-Lab/Label-free-CBM)![GitHub stars](https://img.shields.io/github/stars/Trustworthy-ML-Lab/Label-free-CBM.svg?logo=github&label=Stars)|
|AAAI 2023|Interactive Concept Bottleneck Models|Google| [[paper]](https://arxiv.org/pdf/2212.07430.pdf)![Scholar citations](https://img.shields.io/badge/Citations-28-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)| [[code]](https://github.com/google-research/google-research/tree/master/interactive_cbms)|
|NIPS 2022|Addressing Leakage in Concept Bottleneck Models|Harvard University| [[paper]](https://finale.seas.harvard.edu/sites/scholar.harvard.edu/files/finale/files/10494_addressing_leakage_in_concept_.pdf)![Scholar citations](https://img.shields.io/badge/Citations-31-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)| [[code]](https://github.com/dtak/addressing-leakage)![GitHub stars](https://img.shields.io/github/stars/dtak/addressing-leakage.svg?logo=github&label=Stars)|
|ICML 2021|Promises and Pitfalls of Black-Box Concept Learning Models|Harvard University| [[paper]](https://arxiv.org/pdf/2106.13314.pdf)![Scholar citations](https://img.shields.io/badge/Citations-63-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)||
|CVPR 2023|Language in a Bottle: Language Model Guided Concept Bottlenecks for Interpretable Image Classification|UPENN| [[paper]](https://openaccess.thecvf.com/content/CVPR2023/papers/Yang_Language_in_a_Bottle_Language_Model_Guided_Concept_Bottlenecks_for_CVPR_2023_paper.pdf)![Scholar citations](https://img.shields.io/badge/Citations-85-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)| [[code]](https://github.com/YueYANG1996/LaBo)![GitHub stars](https://img.shields.io/github/stars/YueYANG1996/LaBo.svg?logo=github&label=Stars)|
|ICLR 2023|Label-free Concept Bottleneck Models|UCSD| [[paper]](https://openreview.net/pdf?id=FlCg47MNvBA)![Scholar citations](https://img.shields.io/badge/Citations-58-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)| [[code]](https://github.com/Trustworthy-ML-Lab/Label-free-CBM)![GitHub stars](https://img.shields.io/github/stars/Trustworthy-ML-Lab/Label-free-CBM.svg?logo=github&label=Stars)|
|AAAI 2023|Interactive Concept Bottleneck Models|Google| [[paper]](https://arxiv.org/pdf/2212.07430.pdf)![Scholar citations](https://img.shields.io/badge/Citations-29-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)| [[code]](https://github.com/google-research/google-research/tree/master/interactive_cbms)|
|NIPS 2022|Addressing Leakage in Concept Bottleneck Models|Harvard University| [[paper]](https://finale.seas.harvard.edu/sites/scholar.harvard.edu/files/finale/files/10494_addressing_leakage_in_concept_.pdf)![Scholar citations](https://img.shields.io/badge/Citations-32-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)| [[code]](https://github.com/dtak/addressing-leakage)![GitHub stars](https://img.shields.io/github/stars/dtak/addressing-leakage.svg?logo=github&label=Stars)|
|ICML 2021|Promises and Pitfalls of Black-Box Concept Learning Models|Harvard University| [[paper]](https://arxiv.org/pdf/2106.13314.pdf)![Scholar citations](https://img.shields.io/badge/Citations-64-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)||
|ICML 2018|Interpretability Beyond Feature Attribution:Quantitative Testing with Concept Activation Vectors (TCAV)|Google| [[paper]](https://arxiv.org/pdf/1711.11279.pdf)![Scholar citations](https://img.shields.io/badge/Citations-1.8k-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)| [[code]](https://github.com/tensorflow/tcav)![GitHub stars](https://img.shields.io/github/stars/tensorflow/tcav.svg?logo=github&label=Stars)|
### Model Editing
| Venue | Title | Affiliation |       Link       |   Source   |
| :---: | :---: | :---------: | :---: | :----: |
|ECCV 2020|Rewriting a Deep Generative Model|MIT| [[paper]](https://arxiv.org/pdf/2007.15646.pdf)![Scholar citations](https://img.shields.io/badge/Citations-108-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)| [[code]](https://github.com/davidbau/rewriting)![GitHub stars](https://img.shields.io/github/stars/davidbau/rewriting.svg?logo=github&label=Stars)|
|ECCV 2020|Rewriting a Deep Generative Model|MIT| [[paper]](https://arxiv.org/pdf/2007.15646.pdf)![Scholar citations](https://img.shields.io/badge/Citations-109-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)| [[code]](https://github.com/davidbau/rewriting)![GitHub stars](https://img.shields.io/github/stars/davidbau/rewriting.svg?logo=github&label=Stars)|
|NIPS 2021|Editing a classifier by rewriting its prediction rules|MIT| [[paper]](https://proceedings.neurips.cc/paper/2021/file/c46489a2d5a9a9ecfc53b17610926ddd-Paper.pdf)![Scholar citations](https://img.shields.io/badge/Citations-63-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)| [[code]](https://github.com/MadryLab/EditingClassifiers)![GitHub stars](https://img.shields.io/github/stars/MadryLab/EditingClassifiers.svg?logo=github&label=Stars)|
|arxiv 2024|DeepEdit: Knowledge Editing as Decoding with Constraints|UCLA| [[paper]](https://arxiv.org/pdf/2401.10471.pdf)![Scholar citations](https://img.shields.io/badge/Citations-4-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)| [[code]](https://github.com/wangywUST/DeepEdit)![GitHub stars](https://img.shields.io/github/stars/wangywUST/DeepEdit.svg?logo=github&label=Stars)|

0 comments on commit b893ca1

Please sign in to comment.