Skip to content

Commit

Permalink
[Citation-Bot] update citation automatically
Browse files Browse the repository at this point in the history
  • Loading branch information
citation-bot committed Aug 1, 2024
1 parent f16ee89 commit ba039e2
Show file tree
Hide file tree
Showing 2 changed files with 6 additions and 6 deletions.
2 changes: 1 addition & 1 deletion .github/citation/citation.json
Original file line number Diff line number Diff line change
@@ -1 +1 @@
{"VerSe: A Vertebrae Labelling and Segmentation Benchmark for Multi-detector CT Images": {"citation": 217, "last update": "2024-07-30"}, "MultiplexNet: Towards Fully Satisfied Logical Constraints in Neural Networks": {"citation": 51, "last update": "2024-07-30"}, "Interpretability Beyond Feature Attribution:Quantitative Testing with Concept Activation Vectors (TCAV)": {"citation": 1933, "last update": "2024-07-30"}, "Label-free Concept Bottleneck Models": {"citation": 97, "last update": "2024-07-30"}, "Language in a Bottle: Language Model Guided Concept Bottlenecks for Interpretable Image Classification": {"citation": 130, "last update": "2024-07-30"}, "Editing a classifier by rewriting its prediction rules": {"citation": 72, "last update": "2024-07-30"}, "Concept Bottleneck Models": {"citation": 694, "last update": "2024-07-31"}, "Interactive Concept Bottleneck Models": {"citation": 41, "last update": "2024-07-31"}, "Promises and Pitfalls of Black-Box Concept Learning Models": {"citation": 78, "last update": "2024-07-31"}, "Addressing Leakage in Concept Bottleneck Models": {"citation": 49, "last update": "2024-07-31"}, "CommonGen: A Constrained Text Generation Challenge for Generative Commonsense Reasoning": {"citation": 330, "last update": "2024-07-31"}, "POST-HOC CONCEPT BOTTLENECK MODELS": {"citation": 150, "last update": "2024-07-31"}, "Dividing and Conquering a BlackBox to a Mixture of Interpretable Models: Route, Interpret, Repeat": {"citation": 7, "last update": "2024-07-31"}, "A Semantic Loss Function for Deep Learning with Symbolic Knowledge": {"citation": 514, "last update": "2024-07-31"}, "Neurologic decoding:(un) supervised neural text generation with predicate logic constraints": {"citation": 121, "last update": "2024-07-31"}, "A review of some techniques for inclusion of domain-knowledge into deep neural networks": {"citation": 136, "last update": "2024-07-31"}, "Informed machine learning-a taxonomy and survey of integrating prior knowledge into learning systems": {"citation": 714, "last update": "2024-07-31"}, "The Connectionist Inductive Learning and Logic Programming System": {"citation": 251, "last update": "2024-07-31"}, "Harnessing Deep Neural Networks with Logic Rules": {"citation": 764, "last update": "2024-07-31"}, "Deep Learning with Logical Constraints": {"citation": 60, "last update": "2024-07-31"}, "A Pseudo-Semantic Loss for Autoregressive Models with Logical Constraints": {"citation": 3, "last update": "2024-07-31"}, "Hyper-class Augmented and Regularized Deep Learning for Fine-grained Image Classification": {"citation": 234, "last update": "2024-07-31"}, "Injecting Logical Constraints into Neural Networks via Straight-Through Estimators": {"citation": 22, "last update": "2024-07-31"}, "Rewriting a Deep Generative Model": {"citation": 122, "last update": "2024-07-31"}, "DeepProbLog: Neural Probabilistic Logic Programming": {"citation": 594, "last update": "2024-07-31"}, "Guided Open Vocabulary Image Captioning with Constrained Beam Search": {"citation": 248, "last update": "2024-07-31"}, "DeepEdit: Knowledge Editing as Decoding with Constraints": {"citation": 9, "last update": "2024-07-31"}, "Don't Pour Cereal into Coffee: Differentiable Temporal Logic for Temporal Action Segmentation": {"citation": 22, "last update": "2024-07-31"}}
{"Injecting Logical Constraints into Neural Networks via Straight-Through Estimators": {"citation": 22, "last update": "2024-07-31"}, "Rewriting a Deep Generative Model": {"citation": 122, "last update": "2024-07-31"}, "DeepProbLog: Neural Probabilistic Logic Programming": {"citation": 594, "last update": "2024-07-31"}, "Guided Open Vocabulary Image Captioning with Constrained Beam Search": {"citation": 248, "last update": "2024-07-31"}, "DeepEdit: Knowledge Editing as Decoding with Constraints": {"citation": 9, "last update": "2024-07-31"}, "Don't Pour Cereal into Coffee: Differentiable Temporal Logic for Temporal Action Segmentation": {"citation": 22, "last update": "2024-07-31"}, "VerSe: A Vertebrae Labelling and Segmentation Benchmark for Multi-detector CT Images": {"citation": 217, "last update": "2024-08-01"}, "MultiplexNet: Towards Fully Satisfied Logical Constraints in Neural Networks": {"citation": 51, "last update": "2024-08-01"}, "Interpretability Beyond Feature Attribution:Quantitative Testing with Concept Activation Vectors (TCAV)": {"citation": 1932, "last update": "2024-08-01"}, "Label-free Concept Bottleneck Models": {"citation": 98, "last update": "2024-08-01"}, "Language in a Bottle: Language Model Guided Concept Bottlenecks for Interpretable Image Classification": {"citation": 131, "last update": "2024-08-01"}, "Editing a classifier by rewriting its prediction rules": {"citation": 72, "last update": "2024-08-01"}, "Concept Bottleneck Models": {"citation": 696, "last update": "2024-08-01"}, "Interactive Concept Bottleneck Models": {"citation": 41, "last update": "2024-08-01"}, "Promises and Pitfalls of Black-Box Concept Learning Models": {"citation": 78, "last update": "2024-08-01"}, "Addressing Leakage in Concept Bottleneck Models": {"citation": 49, "last update": "2024-08-01"}, "CommonGen: A Constrained Text Generation Challenge for Generative Commonsense Reasoning": {"citation": 331, "last update": "2024-08-01"}, "POST-HOC CONCEPT BOTTLENECK MODELS": {"citation": 150, "last update": "2024-08-01"}, "Dividing and Conquering a BlackBox to a Mixture of Interpretable Models: Route, Interpret, Repeat": {"citation": 7, "last update": "2024-08-01"}, "A Semantic Loss Function for Deep Learning with Symbolic Knowledge": {"citation": 514, "last update": "2024-08-01"}, "Neurologic decoding:(un) supervised neural text generation with predicate logic constraints": {"citation": 121, "last update": "2024-08-01"}, "A review of some techniques for inclusion of domain-knowledge into deep neural networks": {"citation": 136, "last update": "2024-08-01"}, "Informed machine learning-a taxonomy and survey of integrating prior knowledge into learning systems": {"citation": 713, "last update": "2024-08-01"}, "The Connectionist Inductive Learning and Logic Programming System": {"citation": 251, "last update": "2024-08-01"}, "Harnessing Deep Neural Networks with Logic Rules": {"citation": 764, "last update": "2024-08-01"}, "Deep Learning with Logical Constraints": {"citation": 60, "last update": "2024-08-01"}, "A Pseudo-Semantic Loss for Autoregressive Models with Logical Constraints": {"citation": 3, "last update": "2024-08-01"}, "Hyper-class Augmented and Regularized Deep Learning for Fine-grained Image Classification": {"citation": 234, "last update": "2024-08-01"}}
10 changes: 5 additions & 5 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -14,12 +14,12 @@ A list of awesome resources related to constraint learning
| Venue | Title | Affiliation |       Link       |   Source   |
| :---: | :---: | :---------: | :---: | :----: |
|IJCAI 2022|Deep Learning with Logical Constraints|University of Oxford| [[paper]](https://arxiv.org/pdf/2205.00523.pdf)![Scholar citations](https://img.shields.io/badge/Citations-60-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)||
|TKDE 2019|Informed machine learning-a taxonomy and survey of integrating prior knowledge into learning systems|Fraunhofer IAIS| [[paper]](https://arxiv.org/pdf/1903.12394.pdf)![Scholar citations](https://img.shields.io/badge/Citations-714-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)||
|TKDE 2019|Informed machine learning-a taxonomy and survey of integrating prior knowledge into learning systems|Fraunhofer IAIS| [[paper]](https://arxiv.org/pdf/1903.12394.pdf)![Scholar citations](https://img.shields.io/badge/Citations-713-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)||
|Scientific Reports 2022|A review of some techniques for inclusion of domain-knowledge into deep neural networks|| [[paper]](https://www.nature.com/articles/s41598-021-04590-0)![Scholar citations](https://img.shields.io/badge/Citations-136-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)||
### Benchmark
| Venue | Title | Affiliation |       Link       |   Source   |
| :---: | :---: | :---------: | :---: | :----: |
|EMNLP 2020|CommonGen: A Constrained Text Generation Challenge for Generative Commonsense Reasoning|USC| [[paper]](https://arxiv.org/pdf/1911.03705.pdf)![Scholar citations](https://img.shields.io/badge/Citations-330-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)| [[code]](https://github.com/INK-USC/CommonGen)![GitHub stars](https://img.shields.io/github/stars/INK-USC/CommonGen.svg?logo=github&label=Stars)|
|EMNLP 2020|CommonGen: A Constrained Text Generation Challenge for Generative Commonsense Reasoning|USC| [[paper]](https://arxiv.org/pdf/1911.03705.pdf)![Scholar citations](https://img.shields.io/badge/Citations-331-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)| [[code]](https://github.com/INK-USC/CommonGen)![GitHub stars](https://img.shields.io/github/stars/INK-USC/CommonGen.svg?logo=github&label=Stars)|
|Medical image analysis 2021|VerSe: A Vertebrae Labelling and Segmentation Benchmark for Multi-detector CT Images|Technical University of Munich| [[paper]](https://arxiv.org/abs/2001.09193)![Scholar citations](https://img.shields.io/badge/Citations-217-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)| [[code]](https://github.com/anjany/verse)![GitHub stars](https://img.shields.io/github/stars/anjany/verse.svg?logo=github&label=Stars)|
### Data Augmentation
| Venue | Title | Affiliation |       Link       |   Source   |
Expand All @@ -41,11 +41,11 @@ A list of awesome resources related to constraint learning
### Concept bottleneck models
| Venue | Title | Affiliation |       Link       |   Source   |
| :---: | :---: | :---------: | :---: | :----: |
|ICML 2020|Concept Bottleneck Models|Standard University| [[paper]](https://arxiv.org/pdf/2007.04612.pdf)![Scholar citations](https://img.shields.io/badge/Citations-694-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)| [[code]](https://github.com/yewsiang/ConceptBottleneck)![GitHub stars](https://img.shields.io/github/stars/yewsiang/ConceptBottleneck.svg?logo=github&label=Stars)|
|ICML 2020|Concept Bottleneck Models|Standard University| [[paper]](https://arxiv.org/pdf/2007.04612.pdf)![Scholar citations](https://img.shields.io/badge/Citations-696-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)| [[code]](https://github.com/yewsiang/ConceptBottleneck)![GitHub stars](https://img.shields.io/github/stars/yewsiang/ConceptBottleneck.svg?logo=github&label=Stars)|
|ICLR 2023|POST-HOC CONCEPT BOTTLENECK MODELS|Standard University| [[paper]](https://arxiv.org/pdf/2205.15480.pdf)![Scholar citations](https://img.shields.io/badge/Citations-150-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)| [[code]](https://github.com/mertyg/post-hoc-cbm)![GitHub stars](https://img.shields.io/github/stars/mertyg/post-hoc-cbm.svg?logo=github&label=Stars)|
|ICML 2023|Dividing and Conquering a BlackBox to a Mixture of Interpretable Models: Route, Interpret, Repeat|BU| [[paper]](https://arxiv.org/pdf/2307.05350.pdf)![Scholar citations](https://img.shields.io/badge/Citations-7-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)| [[code]](https://github.com/batmanlab/ICML-2023-Route-interpret-repeat)![GitHub stars](https://img.shields.io/github/stars/batmanlab/ICML-2023-Route-interpret-repeat.svg?logo=github&label=Stars)|
|CVPR 2023|Language in a Bottle: Language Model Guided Concept Bottlenecks for Interpretable Image Classification|UPENN| [[paper]](https://openaccess.thecvf.com/content/CVPR2023/papers/Yang_Language_in_a_Bottle_Language_Model_Guided_Concept_Bottlenecks_for_CVPR_2023_paper.pdf)![Scholar citations](https://img.shields.io/badge/Citations-130-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)| [[code]](https://github.com/YueYANG1996/LaBo)![GitHub stars](https://img.shields.io/github/stars/YueYANG1996/LaBo.svg?logo=github&label=Stars)|
|ICLR 2023|Label-free Concept Bottleneck Models|UCSD| [[paper]](https://openreview.net/pdf?id=FlCg47MNvBA)![Scholar citations](https://img.shields.io/badge/Citations-97-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)| [[code]](https://github.com/Trustworthy-ML-Lab/Label-free-CBM)![GitHub stars](https://img.shields.io/github/stars/Trustworthy-ML-Lab/Label-free-CBM.svg?logo=github&label=Stars)|
|CVPR 2023|Language in a Bottle: Language Model Guided Concept Bottlenecks for Interpretable Image Classification|UPENN| [[paper]](https://openaccess.thecvf.com/content/CVPR2023/papers/Yang_Language_in_a_Bottle_Language_Model_Guided_Concept_Bottlenecks_for_CVPR_2023_paper.pdf)![Scholar citations](https://img.shields.io/badge/Citations-131-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)| [[code]](https://github.com/YueYANG1996/LaBo)![GitHub stars](https://img.shields.io/github/stars/YueYANG1996/LaBo.svg?logo=github&label=Stars)|
|ICLR 2023|Label-free Concept Bottleneck Models|UCSD| [[paper]](https://openreview.net/pdf?id=FlCg47MNvBA)![Scholar citations](https://img.shields.io/badge/Citations-98-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)| [[code]](https://github.com/Trustworthy-ML-Lab/Label-free-CBM)![GitHub stars](https://img.shields.io/github/stars/Trustworthy-ML-Lab/Label-free-CBM.svg?logo=github&label=Stars)|
|AAAI 2023|Interactive Concept Bottleneck Models|Google| [[paper]](https://arxiv.org/pdf/2212.07430.pdf)![Scholar citations](https://img.shields.io/badge/Citations-41-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)| [[code]](https://github.com/google-research/google-research/tree/master/interactive_cbms)|
|NIPS 2022|Addressing Leakage in Concept Bottleneck Models|Harvard University| [[paper]](https://finale.seas.harvard.edu/sites/scholar.harvard.edu/files/finale/files/10494_addressing_leakage_in_concept_.pdf)![Scholar citations](https://img.shields.io/badge/Citations-49-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)| [[code]](https://github.com/dtak/addressing-leakage)![GitHub stars](https://img.shields.io/github/stars/dtak/addressing-leakage.svg?logo=github&label=Stars)|
|ICML 2021|Promises and Pitfalls of Black-Box Concept Learning Models|Harvard University| [[paper]](https://arxiv.org/pdf/2106.13314.pdf)![Scholar citations](https://img.shields.io/badge/Citations-78-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)||
Expand Down

0 comments on commit ba039e2

Please sign in to comment.