Skip to content

Commit

Permalink
[Citation-Bot] update citation automatically
Browse files Browse the repository at this point in the history
  • Loading branch information
citation-bot committed Sep 17, 2024
1 parent 58ab503 commit e9e1ff2
Show file tree
Hide file tree
Showing 2 changed files with 4 additions and 4 deletions.
2 changes: 1 addition & 1 deletion .github/citation/citation.json
Original file line number Diff line number Diff line change
@@ -1 +1 @@
{"DeepProbLog: Neural Probabilistic Logic Programming": {"citation": 608, "last update": "2024-09-15"}, "Guided Open Vocabulary Image Captioning with Constrained Beam Search": {"citation": 255, "last update": "2024-09-15"}, "DeepEdit: Knowledge Editing as Decoding with Constraints": {"citation": 11, "last update": "2024-09-16"}, "Don't Pour Cereal into Coffee: Differentiable Temporal Logic for Temporal Action Segmentation": {"citation": 25, "last update": "2024-09-16"}, "VerSe: A Vertebrae Labelling and Segmentation Benchmark for Multi-detector CT Images": {"citation": 232, "last update": "2024-09-16"}, "MultiplexNet: Towards Fully Satisfied Logical Constraints in Neural Networks": {"citation": 54, "last update": "2024-09-16"}, "Interpretability Beyond Feature Attribution:Quantitative Testing with Concept Activation Vectors (TCAV)": {"citation": 1989, "last update": "2024-09-16"}, "Label-free Concept Bottleneck Models": {"citation": 104, "last update": "2024-09-16"}, "Language in a Bottle: Language Model Guided Concept Bottlenecks for Interpretable Image Classification": {"citation": 141, "last update": "2024-09-16"}, "Editing a classifier by rewriting its prediction rules": {"citation": 73, "last update": "2024-09-16"}, "Concept Bottleneck Models": {"citation": 728, "last update": "2024-09-16"}, "Interactive Concept Bottleneck Models": {"citation": 41, "last update": "2024-09-16"}, "Promises and Pitfalls of Black-Box Concept Learning Models": {"citation": 80, "last update": "2024-09-16"}, "Addressing Leakage in Concept Bottleneck Models": {"citation": 50, "last update": "2024-09-16"}, "CommonGen: A Constrained Text Generation Challenge for Generative Commonsense Reasoning": {"citation": 343, "last update": "2024-09-16"}, "POST-HOC CONCEPT BOTTLENECK MODELS": {"citation": 159, "last update": "2024-09-16"}, "Dividing and Conquering a BlackBox to a Mixture of Interpretable Models: Route, Interpret, Repeat": {"citation": 7, "last update": "2024-09-16"}, "A Semantic Loss Function for Deep Learning with Symbolic Knowledge": {"citation": 529, "last update": "2024-09-16"}, "Neurologic decoding:(un) supervised neural text generation with predicate logic constraints": {"citation": 125, "last update": "2024-09-16"}, "A review of some techniques for inclusion of domain-knowledge into deep neural networks": {"citation": 146, "last update": "2024-09-16"}, "Informed machine learning-a taxonomy and survey of integrating prior knowledge into learning systems": {"citation": 749, "last update": "2024-09-16"}, "The Connectionist Inductive Learning and Logic Programming System": {"citation": 252, "last update": "2024-09-16"}, "Harnessing Deep Neural Networks with Logic Rules": {"citation": 770, "last update": "2024-09-16"}, "Deep Learning with Logical Constraints": {"citation": 63, "last update": "2024-09-16"}, "A Pseudo-Semantic Loss for Autoregressive Models with Logical Constraints": {"citation": 5, "last update": "2024-09-16"}, "Hyper-class Augmented and Regularized Deep Learning for Fine-grained Image Classification": {"citation": 236, "last update": "2024-09-16"}, "Injecting Logical Constraints into Neural Networks via Straight-Through Estimators": {"citation": 22, "last update": "2024-09-16"}, "Rewriting a Deep Generative Model": {"citation": 124, "last update": "2024-09-16"}}
{"Harnessing Deep Neural Networks with Logic Rules": {"citation": 770, "last update": "2024-09-16"}, "Deep Learning with Logical Constraints": {"citation": 63, "last update": "2024-09-16"}, "A Pseudo-Semantic Loss for Autoregressive Models with Logical Constraints": {"citation": 5, "last update": "2024-09-16"}, "Hyper-class Augmented and Regularized Deep Learning for Fine-grained Image Classification": {"citation": 236, "last update": "2024-09-16"}, "Injecting Logical Constraints into Neural Networks via Straight-Through Estimators": {"citation": 22, "last update": "2024-09-16"}, "Rewriting a Deep Generative Model": {"citation": 124, "last update": "2024-09-16"}, "DeepProbLog: Neural Probabilistic Logic Programming": {"citation": 611, "last update": "2024-09-17"}, "Guided Open Vocabulary Image Captioning with Constrained Beam Search": {"citation": 255, "last update": "2024-09-17"}, "DeepEdit: Knowledge Editing as Decoding with Constraints": {"citation": 11, "last update": "2024-09-17"}, "Don't Pour Cereal into Coffee: Differentiable Temporal Logic for Temporal Action Segmentation": {"citation": 25, "last update": "2024-09-17"}, "VerSe: A Vertebrae Labelling and Segmentation Benchmark for Multi-detector CT Images": {"citation": 232, "last update": "2024-09-17"}, "MultiplexNet: Towards Fully Satisfied Logical Constraints in Neural Networks": {"citation": 54, "last update": "2024-09-17"}, "Interpretability Beyond Feature Attribution:Quantitative Testing with Concept Activation Vectors (TCAV)": {"citation": 1989, "last update": "2024-09-17"}, "Label-free Concept Bottleneck Models": {"citation": 104, "last update": "2024-09-17"}, "Language in a Bottle: Language Model Guided Concept Bottlenecks for Interpretable Image Classification": {"citation": 142, "last update": "2024-09-17"}, "Editing a classifier by rewriting its prediction rules": {"citation": 73, "last update": "2024-09-17"}, "Concept Bottleneck Models": {"citation": 728, "last update": "2024-09-17"}, "Interactive Concept Bottleneck Models": {"citation": 41, "last update": "2024-09-17"}, "Promises and Pitfalls of Black-Box Concept Learning Models": {"citation": 80, "last update": "2024-09-17"}, "Addressing Leakage in Concept Bottleneck Models": {"citation": 50, "last update": "2024-09-17"}, "CommonGen: A Constrained Text Generation Challenge for Generative Commonsense Reasoning": {"citation": 343, "last update": "2024-09-17"}, "POST-HOC CONCEPT BOTTLENECK MODELS": {"citation": 159, "last update": "2024-09-17"}, "Dividing and Conquering a BlackBox to a Mixture of Interpretable Models: Route, Interpret, Repeat": {"citation": 7, "last update": "2024-09-17"}, "A Semantic Loss Function for Deep Learning with Symbolic Knowledge": {"citation": 529, "last update": "2024-09-17"}, "Neurologic decoding:(un) supervised neural text generation with predicate logic constraints": {"citation": 125, "last update": "2024-09-17"}, "A review of some techniques for inclusion of domain-knowledge into deep neural networks": {"citation": 147, "last update": "2024-09-17"}, "Informed machine learning-a taxonomy and survey of integrating prior knowledge into learning systems": {"citation": 749, "last update": "2024-09-17"}, "The Connectionist Inductive Learning and Logic Programming System": {"citation": 252, "last update": "2024-09-17"}}
6 changes: 3 additions & 3 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@ A list of awesome resources related to constraint learning
| :---: | :---: | :---------: | :---: | :----: |
|IJCAI 2022|Deep Learning with Logical Constraints|University of Oxford| [[paper]](https://arxiv.org/pdf/2205.00523.pdf)![Scholar citations](https://img.shields.io/badge/Citations-63-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)||
|TKDE 2019|Informed machine learning-a taxonomy and survey of integrating prior knowledge into learning systems|Fraunhofer IAIS| [[paper]](https://arxiv.org/pdf/1903.12394.pdf)![Scholar citations](https://img.shields.io/badge/Citations-749-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)||
|Scientific Reports 2022|A review of some techniques for inclusion of domain-knowledge into deep neural networks|| [[paper]](https://www.nature.com/articles/s41598-021-04590-0)![Scholar citations](https://img.shields.io/badge/Citations-146-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)||
|Scientific Reports 2022|A review of some techniques for inclusion of domain-knowledge into deep neural networks|| [[paper]](https://www.nature.com/articles/s41598-021-04590-0)![Scholar citations](https://img.shields.io/badge/Citations-147-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)||
### Benchmark
| Venue | Title | Affiliation |       Link       |   Source   |
| :---: | :---: | :---------: | :---: | :----: |
Expand All @@ -36,15 +36,15 @@ A list of awesome resources related to constraint learning
|EMNLP 2017|Guided Open Vocabulary Image Captioning with Constrained Beam Search|The Australian National University| [[paper]](https://aclanthology.org/D17-1098.pdf)![Scholar citations](https://img.shields.io/badge/Citations-255-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)| [[code]](https://github.com/nocaps-org/updown-baseline)![GitHub stars](https://img.shields.io/github/stars/nocaps-org/updown-baseline.svg?logo=github&label=Stars)|
|NIPS 2022|Don't Pour Cereal into Coffee: Differentiable Temporal Logic for Temporal Action Segmentation|NUS| [[paper]](https://diff-tl.github.io/assets/docs/dtl_neurips2022.pdf)![Scholar citations](https://img.shields.io/badge/Citations-25-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)| [[code]](https://github.com/ZiweiXU/DTL-action-segmentation)![GitHub stars](https://img.shields.io/github/stars/ZiweiXU/DTL-action-segmentation.svg?logo=github&label=Stars)|
|AAAI 2021|MultiplexNet: Towards Fully Satisfied Logical Constraints in Neural Networks|University of Edinburgh| [[paper]](https://arxiv.org/pdf/2111.01564.pdf)![Scholar citations](https://img.shields.io/badge/Citations-54-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)| [[code]](https://github.com/NickHoernle/semantic_loss)![GitHub stars](https://img.shields.io/github/stars/NickHoernle/semantic_loss.svg?logo=github&label=Stars)|
|NIPS 2018|DeepProbLog: Neural Probabilistic Logic Programming|KU Leuven| [[paper]](https://arxiv.org/pdf/1805.10872.pdf)![Scholar citations](https://img.shields.io/badge/Citations-608-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)| [[code]](https://github.com/ML-KULeuven/deepproblog)![GitHub stars](https://img.shields.io/github/stars/ML-KULeuven/deepproblog.svg?logo=github&label=Stars)|
|NIPS 2018|DeepProbLog: Neural Probabilistic Logic Programming|KU Leuven| [[paper]](https://arxiv.org/pdf/1805.10872.pdf)![Scholar citations](https://img.shields.io/badge/Citations-611-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)| [[code]](https://github.com/ML-KULeuven/deepproblog)![GitHub stars](https://img.shields.io/github/stars/ML-KULeuven/deepproblog.svg?logo=github&label=Stars)|
|ICML 2022|Injecting Logical Constraints into Neural Networks via Straight-Through Estimators|Arizona State University| [[paper]](https://arxiv.org/pdf/2307.04347.pdf)![Scholar citations](https://img.shields.io/badge/Citations-22-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)| [[code]](https://github.com/azreasoners/cl-ste)![GitHub stars](https://img.shields.io/github/stars/azreasoners/cl-ste.svg?logo=github&label=Stars)|
### Concept bottleneck models
| Venue | Title | Affiliation |       Link       |   Source   |
| :---: | :---: | :---------: | :---: | :----: |
|ICML 2020|Concept Bottleneck Models|Standard University| [[paper]](https://arxiv.org/pdf/2007.04612.pdf)![Scholar citations](https://img.shields.io/badge/Citations-728-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)| [[code]](https://github.com/yewsiang/ConceptBottleneck)![GitHub stars](https://img.shields.io/github/stars/yewsiang/ConceptBottleneck.svg?logo=github&label=Stars)|
|ICLR 2023|POST-HOC CONCEPT BOTTLENECK MODELS|Standard University| [[paper]](https://arxiv.org/pdf/2205.15480.pdf)![Scholar citations](https://img.shields.io/badge/Citations-159-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)| [[code]](https://github.com/mertyg/post-hoc-cbm)![GitHub stars](https://img.shields.io/github/stars/mertyg/post-hoc-cbm.svg?logo=github&label=Stars)|
|ICML 2023|Dividing and Conquering a BlackBox to a Mixture of Interpretable Models: Route, Interpret, Repeat|BU| [[paper]](https://arxiv.org/pdf/2307.05350.pdf)![Scholar citations](https://img.shields.io/badge/Citations-7-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)| [[code]](https://github.com/batmanlab/ICML-2023-Route-interpret-repeat)![GitHub stars](https://img.shields.io/github/stars/batmanlab/ICML-2023-Route-interpret-repeat.svg?logo=github&label=Stars)|
|CVPR 2023|Language in a Bottle: Language Model Guided Concept Bottlenecks for Interpretable Image Classification|UPENN| [[paper]](https://openaccess.thecvf.com/content/CVPR2023/papers/Yang_Language_in_a_Bottle_Language_Model_Guided_Concept_Bottlenecks_for_CVPR_2023_paper.pdf)![Scholar citations](https://img.shields.io/badge/Citations-141-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)| [[code]](https://github.com/YueYANG1996/LaBo)![GitHub stars](https://img.shields.io/github/stars/YueYANG1996/LaBo.svg?logo=github&label=Stars)|
|CVPR 2023|Language in a Bottle: Language Model Guided Concept Bottlenecks for Interpretable Image Classification|UPENN| [[paper]](https://openaccess.thecvf.com/content/CVPR2023/papers/Yang_Language_in_a_Bottle_Language_Model_Guided_Concept_Bottlenecks_for_CVPR_2023_paper.pdf)![Scholar citations](https://img.shields.io/badge/Citations-142-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)| [[code]](https://github.com/YueYANG1996/LaBo)![GitHub stars](https://img.shields.io/github/stars/YueYANG1996/LaBo.svg?logo=github&label=Stars)|
|ICLR 2023|Label-free Concept Bottleneck Models|UCSD| [[paper]](https://openreview.net/pdf?id=FlCg47MNvBA)![Scholar citations](https://img.shields.io/badge/Citations-104-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)| [[code]](https://github.com/Trustworthy-ML-Lab/Label-free-CBM)![GitHub stars](https://img.shields.io/github/stars/Trustworthy-ML-Lab/Label-free-CBM.svg?logo=github&label=Stars)|
|AAAI 2023|Interactive Concept Bottleneck Models|Google| [[paper]](https://arxiv.org/pdf/2212.07430.pdf)![Scholar citations](https://img.shields.io/badge/Citations-41-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)| [[code]](https://github.com/google-research/google-research/tree/master/interactive_cbms)|
|NIPS 2022|Addressing Leakage in Concept Bottleneck Models|Harvard University| [[paper]](https://finale.seas.harvard.edu/sites/scholar.harvard.edu/files/finale/files/10494_addressing_leakage_in_concept_.pdf)![Scholar citations](https://img.shields.io/badge/Citations-50-_.svg?logo=google-scholar&labelColor=4f4f4f&color=3388ee)| [[code]](https://github.com/dtak/addressing-leakage)![GitHub stars](https://img.shields.io/github/stars/dtak/addressing-leakage.svg?logo=github&label=Stars)|
Expand Down

0 comments on commit e9e1ff2

Please sign in to comment.