This FFF benchmarking framework is useful to measure FFT performance of different NumPy and SciPy versions and vendors. In addition to Python implementation we also able to benchmark native code (MKL DFTI) implementations of these benchmarks with similar command-line interfaces.
The following example create benchmarking environment for NumPy and SciPy FFT available from intel channel in conda:
conda create -n intel_env -c intel numpy scipy
conda activate intel_env
To run the FFT benchmark framework in Python, type:
python fft_bench.py [-h] [args] size
The framework perform initial warmup call to respective FFT API, and then performs 24 (default) timings for 16 (default) repetitions of FFT computations in the loop. These 24 measurements are aggregated to report minimum, median and maximum timings, which are printed to STDOUT.
Other printed lines which start with 'TAG: ' are printed for information purposes.
Benchmark a 2D out-of-place FFT of a complex128
array of size (10000, 10000)
:
python fft_bench.py 10000x10000
Benchmark a 1D in-place FFT of a float32
array of size 100000000
, print
only 5 measurements, only compute the first half of the conjugate-even
DFT coefficients, and allow the FFT backend to only use one thread:
python fft_bench.py -P -r -t 1 -d float32 -o 5 100000000
Benchmark a 3D in-place FFT of a complex64
array of size 1001x203x3005
,
printing only 5 measurements, each of which average over 24 inner loop
computations:
python fft_bench.py -P -d complex64 -o 5 -i 24 1001x203x3005
- To compile, source compiler and run
make
. - Run with
./fft_bench
.
- Source compiler and MKL, then run
win_compile_all.bat
.> "C:\Program Files (x86)\IntelSWTools\compilers_and_libraries\windows\bin\compilervars.bat intel64" > "C:\Program Files (x86)\IntelSWTools\compilers_and_libraries\windows\mkl\bin\mklvars.bat intel64" > win_compile_all.bat
- To run, run
fft_bench.exe
. Note that long options are not supported on Windows. Use short options instead.
Benchmark a 2D out-of-place FFT of a complex128
array of size (10000, 10000)
:
./fft_bench 10000x10000
Benchmark a 1D in-place FFT of a float32
array of size 100000000
, print
only 5 measurements, only compute the first half of the conjugate-even
DFT coefficients, allow the FFT backend to only use one thread, and cache
the DFTI descriptor between inner loop runs (similar behavior to mkl_fft
for
single dimensional FFTs).
./fft_bench -P -c -r -t 1 -d float32 -o 5 100000000
Benchmark a 3D in-place FFT of a complex64
array of size 1001x203x3005
,
printing only 5 measurements, each of which average over 24 inner loop
computations:
./fft_bench -P -d complex64 -o 5 -i 24 1001x203x3005
usage: ./fft_bench [args] size
Benchmark FFT using Intel(R) MKL DFTI.
FFT problem arguments:
-t, --threads=THREADS use THREADS threads for FFT execution
(default: use MKL's default)
-d, --dtype=DTYPE use DTYPE as the FFT domain. For a list of
understood dtypes, use '-d help'.
(default: complex128)
-r, --rfft do not copy superfluous harmonics when FFT
output is even-conjugate, i.e. for real inputs
-P, --in-place allow overwriting the input buffer with the
FFT outputs
-c, --cached use the same DFTI descriptor for the same
outer loop, i.e. "cache" the descriptor
Timing arguments:
-i, --inner-loops=IL time the benchmark IL times for each printed
measurement. Copies are not included in the
measurements. (default: 16)
-o, --outer-loops=OL print OL measurements. (default: 5)
Output arguments:
-p, --prefix=PREFIX output PREFIX as the first value in outputs
(default: 'Native-C')
-H, --no-header do not output CSV header. This can be useful
if running multiple benchmarks back-to-back.
-h, --help print this message and exit
The size argument specifies the input matrix size as a tuple of positive
decimal integers, delimited by any non-digit. For example, both
(101, 203, 305) and 101x203x305 denote the same 3D FFT.
"Accelerating Scientific Python with Intel Optimizations" by Oleksandr Pavlyk, Denis Nagorny, Andres Guzman-Ballen, Anton Malakhov, Hai Liu, Ehsan Totoni, Todd A. Anderson, Sergey Maidanov. Proceedings of the 16th Python in Science Conference (SciPy 2017), July 10 - July 16, Austin, Texas