Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fixed test notebook #23

Open
wants to merge 2 commits into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
23 changes: 9 additions & 14 deletions test.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -55,9 +55,6 @@
"import os\n",
"import numpy as np\n",
"import torch\n",
"import torch.nn as nn\n",
"import torch.nn.functional as F\n",
"import torch.utils.data as data\n",
"import yaml\n",
"\n",
"import matplotlib\n",
Expand All @@ -71,10 +68,8 @@
"from PIL import Image\n",
"from torchvision import transforms, utils\n",
"\n",
"from datasets import *\n",
"from nets import *\n",
"from functions import *\n",
"from trainer import *"
"from functions import clip_img\n",
"from trainer import Trainer"
],
"execution_count": 0,
"outputs": []
Expand Down Expand Up @@ -102,31 +97,31 @@
"if not os.path.exists(opts.out_path):\n",
" os.makedirs(opts.out_path)\n",
"\n",
"config = yaml.load(open('./configs/' + opts.config + '.yaml', 'r'))\n",
"config = yaml.safe_load(open('./configs/' + opts.config + '.yaml', 'r'))\n",
"img_size = (config['input_w'], config['input_h'])\n",
"\n",
"# Initialize trainer\n",
"trainer = Trainer(config)\n",
"device = torch.device('cuda')\n",
"trainer.to(device)\n",
"\n",
"# Load pretrained model \n",
"# Load pretrained model\n",
"if opts.checkpoint:\n",
" trainer.load_checkpoint(opts.checkpoint)\n",
"else:\n",
" trainer.load_checkpoint(log_dir + 'checkpoint')\n",
"\n",
"\n",
"def preprocess(img_name):\n",
" resize = transforms.Compose([\n",
" transforms.Resize(img_size),\n",
" transforms.ToTensor()\n",
" ])\n",
" normalize = transforms.Normalize(mean=[0.48501961, 0.45795686, 0.40760392], std=[1,1,1])\n",
" normalize = transforms.Normalize(mean=[0.48501961, 0.45795686, 0.40760392], std=[1, 1, 1])\n",
" img_pil = Image.open(opts.img_path + img_name)\n",
" img_np = np.array(img_pil)\n",
" img = resize(img_pil)\n",
" if img.size(0) == 1:\n",
" img = torch.cat((img, img, img), dim = 0)\n",
" img = torch.cat((img, img, img), dim=0)\n",
" img = normalize(img)\n",
" return img"
],
Expand Down Expand Up @@ -157,14 +152,14 @@
" image_A = image_A.unsqueeze(0).to(device)\n",
"\n",
" age_modif = torch.tensor(target_age).unsqueeze(0).to(device)\n",
" image_A_modif = trainer.test_eval(image_A, age_modif, target_age=target_age, hist_trans=True) \n",
" image_A_modif = trainer.test_eval(image_A, age_modif, target_age=target_age, hist_trans=True)\n",
" utils.save_image(clip_img(image_A_modif), opts.out_path + img_name.split('.')[0] + '_age_' + str(target_age) + '.jpg')\n",
"\n",
" # Plot manipulated image\n",
" img_out = np.array(Image.open(opts.out_path + img_name.split('.')[0] + '_age_' + str(target_age) + '.jpg'))\n",
" plt.axis('off')\n",
" plt.imshow(img_out)\n",
" plt.show() "
" plt.show()"
],
"execution_count": 0,
"outputs": []
Expand Down