Skip to content

Supervised Regression using SVR and Neural Networks for Early Prediction of End-of-Life in Lithium-ion Batteries

Notifications You must be signed in to change notification settings

JamesChapmanNV/Machine_Learning_Lithium_Ion_Batteries

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

39 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Supervised Regression using SVR and Neural Networks for Early Prediction of End-of-Life in Lithium-ion Batteries

Early prediction of end-of-life in lithium-ion batteries is a critical factor in managing performance and preventing malfunctions. This work studies various machine learning methods using the lithium-ion battery lifecycle dataset provided by Severson et al. [1].

Support Vector Regression
Multilayer Perceptron
Long-Short-Term-Memory Recurrent Neural Network
Convolutional Neural Network

DATA AVAILABILITY
(https://data.matr.io/1/projects/5c48dd2bc625d700019f3204)

[1] Severson, K. A., Attia, P. M., Jin, N., Perkins, N., Jiang, B., Yang, Z., Chen, M. H., Aykol, M., Herring, P. K., Fraggedakis, D., Bazant, M. Z., Harris, S. J., Chueh, W. C., & Braatz, R. D. (2019). Data-driven prediction of battery cycle life before capacity degradation. Nature Energy, 4(5), 383–391. (https://www.doi.org/10.1038/s41560-019-0356-8)

[2] Attia, P. M., Severson, K. A., & Witmer, J. D. (2021). Statistical learning for accurate and interpretable battery lifetime prediction. Journal of The Electrochemical Society, 168(9), 090547. (https://www.doi.org/10.1149/1945-7111/ac2704)

[3] Xu, P., & Lu, Y. (2022). Predicting Li-ion Battery Cycle Life with LSTM RNN. arXiv preprint (https://www.arxiv.org/abs/2207.03687)

About

Supervised Regression using SVR and Neural Networks for Early Prediction of End-of-Life in Lithium-ion Batteries

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published