genetic algorithm, Particle swarm optimization, Simulated Annealing, Ant Colony Algorithm in Python
from ga import GA
def demo_func(x):
x1, x2, x3 = x
return x1 ** 2 + (x2 - 0.05) ** 2 + x3 ** 2
ga = GA(func=demo_func, lb=[-1, -10, -5], ub=[2, 10, 2], max_iter=500)
best_x, best_y = ga.fit()
plot the result using matplotlib:
import pandas as pd
import matplotlib.pyplot as plt
FitV_history = pd.DataFrame(ga.FitV_history)
fig, ax = plt.subplots(2, 1)
ax[0].plot(FitV_history.index, FitV_history.values, '.', color='red')
plt_max = FitV_history.max(axis=1)
ax[1].plot(plt_max.index, plt_max, label='max')
ax[1].plot(plt_max.index, plt_max.cummax())
plt.show()
Just import the GA_TSP
, it overloads the crossover
, mutation
to solve the TSP
Firstly, your data (the distance matrix). Here I generate the data randomly as a demo:
import numpy as np
num_points = 8
points = range(num_points)
points_coordinate = np.random.rand(num_points, 2)
distance_matrix = np.zeros(shape=(num_points, num_points))
for i in range(num_points):
for j in range(num_points):
distance_matrix[i][j] = np.linalg.norm(points_coordinate[i] - points_coordinate[j], ord=2)
print('distance_matrix is: \n', distance_matrix)
def cal_total_distance(points):
num_points, = points.shape
total_distance = 0
for i in range(num_points - 1):
total_distance += distance_matrix[points[i], points[i + 1]]
total_distance += distance_matrix[points[i + 1], points[0]]
return total_distance
Do GA
from GA import GA_TSP
ga_tsp = GA_TSP(func=cal_total_distance, points=points, pop=50, max_iter=200, Pm=0.001)
best_points, best_distance = ga_tsp.fit()
Plot the result:
fig, ax = plt.subplots(1, 1)
best_points_ = np.concatenate([best_points, [best_points[0]]])
best_points_coordinate = points_coordinate[best_points_, :]
ax.plot(best_points_coordinate[:, 0], best_points_coordinate[:, 1],'o-r')
plt.show()
def demo_func(x):
x1, x2, x3 = x
return x1 ** 2 + (x2 - 0.05) ** 2 + x3 ** 2
pso = PSO(func=demo_func, dim=3)
fitness = pso.fit()
print('best_x is ',pso.gbest_x)
print('best_y is ',pso.gbest_y)
pso.plot_history()
from SA import SA
def demo_func(x):
x1, x2, x3 = x
return x1 ** 2 + (x2 - 0.05) ** 2 + x3 ** 2
sa = SA(func=demo_func, x0=[1, 1, 1])
x_star, y_star = sa.fit()
print(x_star, y_star)
import matplotlib.pyplot as plt
import pandas as pd
plt.plot(pd.DataFrame(sa.f_list).cummin(axis=0))
plt.show()
Firstly, your data (the distance matrix). Here I generate the data randomly as a demo (find it in GA for TSP above)
DO SA for TSP
from SA import SA_TSP
sa_tsp = SA_TSP(func=demo_func, x0=range(num_points))
best_points, best_distance = sa_tsp.fit()
plot the result
fig, ax = plt.subplots(1, 1)
best_points_ = np.concatenate([best_points, [best_points[0]]])
best_points_coordinate = points_coordinate[best_points_, :]
ax.plot(best_points_coordinate[:, 0], best_points_coordinate[:, 1], 'o-r')
plt.show()
ASA needs lots of parameter management, which is why I am not going to code it as a class.
python ACA.py