-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Tao Chen
authored and
Tao Chen
committed
Jan 6, 2025
1 parent
b839474
commit 6179eb9
Showing
1 changed file
with
109 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,109 @@ | ||
using PiecewiseOrthogonalPolynomials, Plots, BlockArrays | ||
using MatrixFactorizations, LinearAlgebra, BlockBandedMatrices | ||
### | ||
# QL | ||
#### | ||
function my_ql(A::BBBArrowheadMatrix{T}) where T | ||
m,n = size(A.A) | ||
l = length(A.D) | ||
m2, n2 = size(A.D[1]) | ||
@assert m == n == l+1 | ||
@assert m2 == n2 | ||
#results stored in F and tau | ||
F = BlockedArray(Matrix(A), axes(A)) | ||
tau = zeros(m+l*m2) | ||
for j in m2:-1:3 | ||
for i in l:-1:1 | ||
upper_entry = F[Block(j-1, j+1)][i, i] #A.D[i][j-2,j] | ||
dia_entry = F[Block(j+1, j+1)][i, i] #A.D[i][j,j] | ||
#perform Householder transformation | ||
dia_entry_new = -sign(dia_entry)*sqrt(dia_entry^2 + upper_entry^2) | ||
v = [upper_entry, dia_entry-dia_entry_new] | ||
coef = 2/(v[1]^2+v[2]^2) | ||
#denote the householder transformation as [c1 s1;c2 s2] | ||
c1 = 1 - coef * v[1]^2 | ||
s1 = - coef * v[1] * v[2] | ||
c2 = s1 | ||
s2 = 1 - coef * v[2]^2 | ||
print(dia_entry_new) | ||
F[m+(j-1)*l+i, m+(j-1)*l+i] = dia_entry_new #update F[Block(j+1, j+1)][i, i] | ||
F[m+(j-3)*l+i, m+(j-1)*l+i] = v[1]/v[2] #update F[Block(j-1, j+1)][i, i] | ||
tau[m+(j-1)*l+i] = coef*v[2]^2 | ||
#row recombination(householder transformation) for other columns | ||
current_upper_entry = F[Block(j-1, j-1)][i, i] #A.D[i][j-2,j-2] | ||
current_lower_entry = F[Block(j+1, j-1)][i, i] #A.D[i][j,j-2] | ||
F[m+(j-3)*l+i, m+(j-3)*l+i] = c1 * current_upper_entry + s1 * current_lower_entry #update F[Block(j-1, j-1)][i, i] | ||
F[m+(j-1)*l+i, m+(j-3)*l+i] = c2 * current_upper_entry + s2 * current_lower_entry #update F[Block(j+1, j-1)][i, i] | ||
if j >= 5 | ||
#Deal with A.D blocks which do not share common rows with A.C | ||
current_entry = F[Block(j-1, j-3)][i, i] #A.D[i][j-2,j-4] | ||
F[m+(j-3)*l+i, m+(j-5)*l+i] = c1 * current_entry #update F[Block(j-1, j-3)][i, i] | ||
F[m+(j-1)*l+i, m+(j-5)*l+i] = c2 * current_entry #update F[Block(j+1, j-3)][i, i] | ||
else | ||
#Deal with A.D blocks which share common rows with A.C | ||
current_entry = F[Block(j-1, 1)][i, i] #A.C[j-2][i,i] | ||
F[m+(j-3)*l+i, i] = c1 * current_entry #update F[Block(j-1, 1)][i, i] | ||
F[m+(j-1)*l+i, i] = c2 * current_entry #update F[Block(j+1, 1)][i, i] | ||
|
||
current_entry = F[Block(j-1, 1)][i, i+1] #A.C[j-2][i,i+1] | ||
F[m+(j-3)*l+i, i+1] = c1 * current_entry #update F[Block(j-1, 1)][i, i+1] | ||
F[m+(j-1)*l+i, i+1] = c2 * current_entry #F[Block(j+1, 1)][i, i+1] | ||
end | ||
end | ||
end | ||
|
||
#Deal with Block(1,3) | ||
#vectors x and Lambda denote a rank 1 semiseperable matrix | ||
lambda = 1.0 | ||
Lambda = [] | ||
x = [F[Block(1,3)][l+1,l]] | ||
x_len = abs(x[1]) | ||
for i in l:-1:2 #consider i=1 later | ||
a = F[Block(1,3)][i,i] | ||
b = F[Block(1,3)][i,i-1] | ||
c = F[Block(3,3)][i,i] | ||
v_last = c + sign(c) * sqrt(a^2 + lambda^2 * x_len^2 + c^2) | ||
v_len = sqrt(a^2 + lambda^2 * x_len^2 + v_last^2) | ||
F[m+l+i,m+l+i] = -sign(c) * sqrt(a^2 + lambda^2 * x_len^2 + c^2) | ||
pushfirst!(Lambda, lambda / v_last) | ||
lambda = -2/v_len^2 * a * b * lambda | ||
F[m+l+i, m+l+i-1] = -2/v_len^2 * v_last * a * b | ||
x_first = (1 - 2/v_len^2 * a^2) * b / lambda | ||
pushfirst!(x, x_first) | ||
x_len = sqrt(x_len^2 + x_first^2) | ||
#record information of V | ||
F[i+1, m+l+i] = 0 | ||
F[i, m+l+i] = a / v_last | ||
tau[m+l+i] = 2 * v_last^2 / v_len^2 | ||
end | ||
#deal with the last column in Block(1,3) | ||
a = F[Block(1,3)][1,1] | ||
c = F[Block(3,3)][1,1] | ||
v_last = c + sign(c) * sqrt(a^2 + lambda^2 * x_len^2 + c^2) | ||
v_len = sqrt(a^2 + lambda^2 * x_len^2 + v_last^2) | ||
pushfirst!(Lambda, lambda / v_last) | ||
F[m+l+1,m+l+1] = -sign(c) * sqrt(a^2 + lambda^2 * x_len^2 + c^2) | ||
F[2, m+l+1] = 0 | ||
F[1, m+l+1] = a / v_last | ||
tau[m+l+1] = 2 * v_last^2 / v_len^2 | ||
|
||
F, tau, x, Lambda | ||
end | ||
|
||
|
||
𝐗 = range(-1,1; length=10) | ||
C = ContinuousPolynomial{1}(𝐗) | ||
plot(C[:,Block(2)]) | ||
|
||
#plot(C[:,Block.(2:3)]) | ||
M = C'C | ||
#M = grammatrix(C) | ||
Δ = weaklaplacian(C) | ||
N = 6 | ||
KR = Block.(Base.OneTo(N)) | ||
Mₙ = M[KR,KR] | ||
Δₙ = Δ[KR,KR] | ||
A = Δₙ + 100^2 * Mₙ | ||
FF,ttau, xx, LLambda = my_ql(A) | ||
#tau = ql(A).τ | ||
#f = ql(A).factors |