Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Preserve more FieldArrays with parametric eltype. #1064

Open
wants to merge 3 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
36 changes: 25 additions & 11 deletions src/FieldArray.jl
Original file line number Diff line number Diff line change
Expand Up @@ -125,14 +125,28 @@ Base.cconvert(::Type{<:Ptr}, a::FieldArray) = Base.RefValue(a)
Base.unsafe_convert(::Type{Ptr{T}}, m::Base.RefValue{FA}) where {N,T,D,FA<:FieldArray{N,T,D}} =
Ptr{T}(Base.unsafe_convert(Ptr{FA}, m))

# We can automatically preserve FieldArrays in array operations which do not
# change their eltype or Size. This should cover all non-parametric FieldArray,
# but for those which are parametric on the eltype the user will still need to
# overload similar_type themselves.
similar_type(::Type{A}, ::Type{T}, S::Size) where {N, T, A<:FieldArray{N, T}} =
_fieldarray_similar_type(A, T, S, Size(A))

# Extra layer of dispatch to match NewSize and OldSize
_fieldarray_similar_type(A, T, NewSize::S, OldSize::S) where {S} = A
_fieldarray_similar_type(A, T, NewSize, OldSize) =
default_similar_type(T, NewSize, length_val(NewSize))
function similar_type(::Type{A}, ::Type{T}, S::Size) where {T,A<:FieldArray}
# We can preserve FieldArrays in array operations which do not change their `Size` and `eltype`.
has_eltype(A) && eltype(A) === T && has_size(A) && Size(A) === S && return A
# FieldArrays with parametric `eltype` would be adapted to the new `eltype` automatically.
A′ = Base.typeintersect(base_type(A), StaticArray{Tuple{Tuple(S)...},T,length(S)})
# But extra parameters are disallowed here. Also we check `fieldtypes` to make sure the result is valid.
isconcretetype(A′) && fieldtypes(A′) === ntuple(_ -> T, Val(prod(S))) && return A′
# Otherwise, we fallback to `S/MArray` based on it's mutability.
if ismutabletype(A)
return mutable_similar_type(T, S, length_val(S))
else
return default_similar_type(T, S, length_val(S))
end
end

# return `Union{}` for Union Type. Otherwise return the constructor with no parameters.
@pure base_type(@nospecialize(T::Type)) = (T′ = Base.unwrap_unionall(T);
T′ isa DataType ? T′.name.wrapper : Union{})
if VERSION < v"1.8"
fieldtypes(::Type{T}) where {T} = ntuple(i -> fieldtype(T, i), Val(fieldcount(T)))
@eval @pure function ismutabletype(@nospecialize(T::Type))
T′ = Base.unwrap_unionall(T)
T′ isa DataType && $(VERSION < v"1.7" ? :(T′.mutable) : :(T′.name.flags & 0x2 == 0x2))
end
end
5 changes: 2 additions & 3 deletions test/FieldMatrix.jl
Original file line number Diff line number Diff line change
Expand Up @@ -59,7 +59,6 @@
yy::T
end

StaticArrays.similar_type(::Type{<:Tensor2x2}, ::Type{T}, s::Size{(2,2)}) where {T} = Tensor2x2{T}
end)

p = Tensor2x2(0.0, 0.0, 0.0, 0.0)
Expand All @@ -83,8 +82,8 @@

@test @inferred(similar_type(Tensor2x2{Float64})) == Tensor2x2{Float64}
@test @inferred(similar_type(Tensor2x2{Float64}, Float32)) == Tensor2x2{Float32}
@test @inferred(similar_type(Tensor2x2{Float64}, Size(3,3))) == SMatrix{3,3,Float64,9}
@test @inferred(similar_type(Tensor2x2{Float64}, Float32, Size(4,4))) == SMatrix{4,4,Float32,16}
@test @inferred(similar_type(Tensor2x2{Float64}, Size(3, 3))) == MMatrix{3,3,Float64,9}
@test @inferred(similar_type(Tensor2x2{Float64}, Float32, Size(4, 4))) == MMatrix{4,4,Float32,16}

# eltype promotion
@test Tuple(@inferred(Tensor2x2(1., 2, 3, 4f0))) === (1.,2.,3.,4.)
Expand Down
31 changes: 27 additions & 4 deletions test/FieldVector.jl
Original file line number Diff line number Diff line change
Expand Up @@ -63,7 +63,6 @@
y::T
end

StaticArrays.similar_type(::Type{<:Point2D}, ::Type{T}, s::Size{(2,)}) where {T} = Point2D{T}
end)

p = Point2D(0.0, 0.0)
Expand All @@ -86,8 +85,8 @@

@test @inferred(similar_type(Point2D{Float64})) == Point2D{Float64}
@test @inferred(similar_type(Point2D{Float64}, Float32)) == Point2D{Float32}
@test @inferred(similar_type(Point2D{Float64}, Size(4))) == SVector{4,Float64}
@test @inferred(similar_type(Point2D{Float64}, Float32, Size(4))) == SVector{4,Float32}
@test @inferred(similar_type(Point2D{Float64}, Size(4))) == MVector{4,Float64}
@test @inferred(similar_type(Point2D{Float64}, Float32, Size(4))) == MVector{4,Float32}

# eltype promotion
@test Point2D(1f0, 2) isa Point2D{Float32}
Expand Down Expand Up @@ -122,9 +121,33 @@
# No similar_type defined - test fallback codepath
end)

@test @inferred(similar_type(FVT{Float64}, Float32)) == SVector{2,Float32} # Fallback code path
@test @inferred(similar_type(FVT{Float64}, Float32)) == FVT{Float32}
@test @inferred(similar_type(FVT{Float64}, Size(2))) == FVT{Float64}
@test @inferred(similar_type(FVT{Float64}, Size(3))) == SVector{3,Float64}
@test @inferred(similar_type(FVT{Float64}, Float32, Size(3))) == SVector{3,Float32}
end

@testset "similar_type for some ill FieldVector" begin
# extra parameters
struct IllFV{T,N} <: FieldVector{3,T}
x::T
y::T
z::T
end

@test @inferred(similar_type(IllFV{Float64}, Float64)) == IllFV{Float64}
@test @inferred(similar_type(IllFV{Float64,Int}, Float64)) == IllFV{Float64,Int}
@test @inferred(similar_type(IllFV{Float64}, Float32)) == SVector{3,Float32}
@test @inferred(similar_type(IllFV{Float64,Int}, Float32)) == SVector{3,Float32}

# invalid `eltype`
struct IllFV2{T} <: FieldVector{3,T}
x::Int
y::Float64
z::Int8
end

@test @inferred(similar_type(IllFV2{Float64}, Float64)) == IllFV2{Float64}
@test @inferred(similar_type(IllFV2{Float64}, Float32)) == SVector{3,Float32}
end
end