Skip to content

Commit

Permalink
Add function for testing orientation of a curve (#85)
Browse files Browse the repository at this point in the history
  • Loading branch information
DanielVandH authored Aug 15, 2023
1 parent 23ee89f commit db0bfac
Show file tree
Hide file tree
Showing 3 changed files with 313 additions and 2 deletions.
2 changes: 1 addition & 1 deletion Project.toml
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
name = "DelaunayTriangulation"
uuid = "927a84f5-c5f4-47a5-9785-b46e178433df"
authors = ["Daniel VandenHeuvel <[email protected]>"]
version = "0.8.6"
version = "0.8.7"

[deps]
DataStructures = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8"
Expand Down
21 changes: 21 additions & 0 deletions src/data_structures/triangulation/boundary_nodes.jl
Original file line number Diff line number Diff line change
Expand Up @@ -281,3 +281,24 @@ end
Returns all the boundary indices in the triangulation `tri`.
"""
all_boundary_indices(tri::Triangulation) = keys(get_boundary_index_ranges(tri))

"""
is_positively_oriented(tri::Triangulation, curve_index)
Tests if the curve with index `curve_index` in the triangulation `tri` is positively oriented.
"""
function is_positively_oriented(tri::Triangulation, curve_index)
points = get_points(tri)
if has_boundary_nodes(tri)
boundary_nodes = get_boundary_nodes(tri)
if has_multiple_curves(boundary_nodes)
curve_boundary_nodes = get_boundary_nodes(boundary_nodes, curve_index)
else
curve_boundary_nodes = boundary_nodes
end
else
curve_boundary_nodes = get_convex_hull_indices(tri)
end
area = polygon_features(points, curve_boundary_nodes)[1]
return area > 0.0
end
292 changes: 291 additions & 1 deletion test/data_structures/triangulation.jl
Original file line number Diff line number Diff line change
Expand Up @@ -883,6 +883,296 @@ end
@test collect(each_solid_vertex(tri)) == collect(each_vertex(tri))
@test !DelaunayTriangulation.has_boundary_vertices(tri)
@test DelaunayTriangulation.num_ghost_vertices(tri) == 0
@test DelaunayTriangulation.num_solid_vertices(tri) == 3
@test DelaunayTriangulation.num_solid_vertices(tri) == 3
@test isempty(collect(each_ghost_vertex(tri)))
end

@testset "Boundary curve orientation" begin
tri = triangulate(rand(2, 500))
@test DT.is_positively_oriented(tri, 1)
lock_convex_hull!(tri)
@test DT.is_positively_oriented(tri, 1)

pts = [
(-7.36, 12.55), (-9.32, 8.59), (-9.0, 3.0), (-6.32, -0.27),
(-4.78, -1.53), (2.78, -1.41), (-5.42, 1.45), (7.86, 0.67),
(10.92, 0.23), (9.9, 7.39), (8.14, 4.77), (13.4, 8.61),
(7.4, 12.27), (2.2, 13.85), (-3.48, 10.21), (-4.56, 7.35),
(3.44, 8.99), (3.74, 5.87), (-2.0, 8.0), (-2.52, 4.81),
(1.34, 6.77), (1.24, 4.15)
]
boundary_points = [
(0.0, 0.0), (2.0, 1.0), (3.98, 2.85), (6.0, 5.0),
(7.0, 7.0), (7.0, 9.0), (6.0, 11.0), (4.0, 12.0),
(2.0, 12.0), (1.0, 11.0), (0.0, 9.13), (-1.0, 11.0),
(-2.0, 12.0), (-4.0, 12.0), (-6.0, 11.0), (-7.0, 9.0),
(-6.94, 7.13), (-6.0, 5.0), (-4.0, 3.0), (-2.0, 1.0), (0.0, 0.0)
]
boundary_nodes, pts = convert_boundary_points_to_indices(boundary_points; existing_points=pts)
tri = triangulate(pts; boundary_nodes, delete_ghosts=false)
@test DT.is_positively_oriented(tri, 1)

points = [
(2.0, 8.0), (6.0, 4.0), (2.0, 6.0),
(2.0, 4.0), (8.0, 2.0)
]
segment_1 = [(0.0, 0.0), (14.0, 0.0)]
segment_2 = [(14.0, 0.0), (10.0, 4.0), (4.0, 6.0), (2.0, 12.0), (0.0, 14.0)]
segment_3 = [(0.0, 14.0), (0.0, 0.0)]
boundary_points = [segment_1, segment_2, segment_3]
boundary_nodes, points = convert_boundary_points_to_indices(boundary_points; existing_points=points)
tri = triangulate(points; boundary_nodes)
@test DT.is_positively_oriented(tri, 1)

curve_1 = [[
(0.0, 0.0), (4.0, 0.0), (8.0, 0.0), (12.0, 0.0), (12.0, 4.0),
(12.0, 8.0), (14.0, 10.0), (16.0, 12.0), (16.0, 16.0),
(14.0, 18.0), (12.0, 20.0), (12.0, 24.0), (12.0, 28.0),
(8.0, 28.0), (4.0, 28.0), (0.0, 28.0), (-2.0, 26.0), (0.0, 22.0),
(0.0, 18.0), (0.0, 10.0), (0.0, 8.0), (0.0, 4.0), (-4.0, 4.0),
(-4.0, 0.0), (0.0, 0.0),
]]
curve_2 = [[
(4.0, 26.0), (8.0, 26.0), (10.0, 26.0), (10.0, 24.0),
(10.0, 22.0), (10.0, 20.0), (8.0, 20.0), (6.0, 20.0),
(4.0, 20.0), (4.0, 22.0), (4.0, 24.0), (4.0, 26.0)
]]
curve_3 = [[(4.0, 16.0), (12.0, 16.0), (12.0, 14.0), (4.0, 14.0), (4.0, 16.0)]]
curve_4 = [[(4.0, 8.0), (10.0, 8.0), (8.0, 6.0), (6.0, 6.0), (4.0, 8.0)]]
curves = [curve_1, curve_2, curve_3, curve_4]
points = [
(2.0, 26.0), (2.0, 24.0), (6.0, 24.0), (6.0, 22.0), (8.0, 24.0), (8.0, 22.0),
(2.0, 22.0), (0.0, 26.0), (10.0, 18.0), (8.0, 18.0), (4.0, 18.0), (2.0, 16.0),
(2.0, 12.0), (6.0, 12.0), (2.0, 8.0), (2.0, 4.0), (4.0, 2.0),
(-2.0, 2.0), (4.0, 6.0), (10.0, 2.0), (10.0, 6.0), (8.0, 10.0), (4.0, 10.0),
(10.0, 12.0), (12.0, 12.0), (14.0, 26.0), (16.0, 24.0), (18.0, 28.0),
(16.0, 20.0), (18.0, 12.0), (16.0, 8.0), (14.0, 4.0), (14.0, -2.0),
(6.0, -2.0), (2.0, -4.0), (-4.0, -2.0), (-2.0, 8.0), (-2.0, 16.0),
(-4.0, 22.0), (-4.0, 26.0), (-2.0, 28.0), (6.0, 15.0), (7.0, 15.0),
(8.0, 15.0), (9.0, 15.0), (10.0, 15.0), (6.2, 7.8),
(5.6, 7.8), (5.6, 7.6), (5.6, 7.4), (6.2, 7.4), (6.0, 7.6),
(7.0, 7.8), (7.0, 7.4)]
boundary_nodes, points = convert_boundary_points_to_indices(curves; existing_points=points)
tri = triangulate(points; boundary_nodes=boundary_nodes)
@test DT.is_positively_oriented(tri, 1)
@test !DT.is_positively_oriented(tri, 2)
@test !DT.is_positively_oriented(tri, 3)
@test !DT.is_positively_oriented(tri, 4)

curve_1 = [
[(0.0, 0.0), (5.0, 0.0), (10.0, 0.0), (15.0, 0.0), (20.0, 0.0), (25.0, 0.0)],
[(25.0, 0.0), (25.0, 5.0), (25.0, 10.0), (25.0, 15.0), (25.0, 20.0), (25.0, 25.0)],
[(25.0, 25.0), (20.0, 25.0), (15.0, 25.0), (10.0, 25.0), (5.0, 25.0), (0.0, 25.0)],
[(0.0, 25.0), (0.0, 20.0), (0.0, 15.0), (0.0, 10.0), (0.0, 5.0), (0.0, 0.0)]
] # outer-most boundary: counter-clockwise
curve_2 = [
[(4.0, 6.0), (4.0, 14.0), (4.0, 20.0), (18.0, 20.0), (20.0, 20.0)],
[(20.0, 20.0), (20.0, 16.0), (20.0, 12.0), (20.0, 8.0), (20.0, 4.0)],
[(20.0, 4.0), (16.0, 4.0), (12.0, 4.0), (8.0, 4.0), (4.0, 4.0), (4.0, 6.0)]
] # inner boundary: clockwise
curve_3 = [
[(12.906, 10.912), (16.0, 12.0), (16.16, 14.46), (16.29, 17.06),
(13.13, 16.86), (8.92, 16.4), (8.8, 10.9), (12.906, 10.912)]
] # this is inside curve_2, so it's counter-clockwise
curves = [curve_1, curve_2, curve_3]
points = [
(3.0, 23.0), (9.0, 24.0), (9.2, 22.0), (14.8, 22.8), (16.0, 22.0),
(23.0, 23.0), (22.6, 19.0), (23.8, 17.8), (22.0, 14.0), (22.0, 11.0),
(24.0, 6.0), (23.0, 2.0), (19.0, 1.0), (16.0, 3.0), (10.0, 1.0), (11.0, 3.0),
(6.0, 2.0), (6.2, 3.0), (2.0, 3.0), (2.6, 6.2), (2.0, 8.0), (2.0, 11.0),
(5.0, 12.0), (2.0, 17.0), (3.0, 19.0), (6.0, 18.0), (6.5, 14.5),
(13.0, 19.0), (13.0, 12.0), (16.0, 8.0), (9.8, 8.0), (7.5, 6.0),
(12.0, 13.0), (19.0, 15.0)
]
boundary_nodes, points = convert_boundary_points_to_indices(curves; existing_points=points)
tri = triangulate(points; boundary_nodes=boundary_nodes, check_arguments=false)
@test DT.is_positively_oriented(tri, 1)
@test !DT.is_positively_oriented(tri, 2)
@test DT.is_positively_oriented(tri, 3)

θ = LinRange(0, 2π, 20) |> collect
θ[end] = 0 # need to make sure that 2π gives the exact same coordinates as 0
xy = Vector{Vector{Vector{NTuple{2,Float64}}}}()
cx = 0.0
for i in 1:2
# Make the exterior circle
push!(xy, [[(cx + cos(θ), sin(θ)) for θ in θ]])
# Now the interior circle - clockwise
push!(xy, [[(cx + 0.5cos(θ), 0.5sin(θ)) for θ in reverse(θ)]])
cx += 3.0
end
boundary_nodes, points = convert_boundary_points_to_indices(xy)
tri = triangulate(points; boundary_nodes=boundary_nodes, check_arguments=false)
@test DT.is_positively_oriented(tri, 1)
@test !DT.is_positively_oriented(tri, 2)
@test DT.is_positively_oriented(tri, 3)
@test !DT.is_positively_oriented(tri, 4)

C = (15.7109521325776, 33.244486807457)
D = (14.2705719699703, 32.8530791545746)
E = (14.3, 27.2)
F = (14.1, 27.0)
G = (13.7, 27.2)
H = (13.4, 27.5)
I = (13.1, 27.6)
J = (12.7, 27.4)
K = (12.5, 27.1)
L = (12.7, 26.7)
M = (13.1, 26.5)
N = (13.6, 26.4)
O = (14.0, 26.4)
P = (14.6, 26.5)
Q = (15.1983491346581, 26.8128534095401)
R = (15.6, 27.6)
S = (15.6952958264624, 28.2344688505621)
T = (17.8088971520274, 33.1192363585346)
U = (16.3058917649589, 33.0722674401887)
V = (16.3215480710742, 29.7374742376305)
W = (16.3841732955354, 29.393035503094)
Z = (16.6190178872649, 28.9233463196351)
A1 = (17.0417381523779, 28.5319386667527)
B1 = (17.5114273358368, 28.3753756055997)
C1 = (18.1376795804487, 28.3597192994844)
D1 = (18.7169629067146, 28.5632512789833)
E1 = (19.2805899268653, 28.8920337074045)
F1 = (19.26493362075, 28.4536571361762)
G1 = (20.6426885588962, 28.4223445239456)
H1 = (20.689657477242, 33.1035800524193)
I1 = (19.2805899268653, 33.0722674401887)
J1 = (19.2962462329806, 29.7531305437458)
K1 = (19.0614016412512, 29.393035503094)
L1 = (18.7482755189452, 29.236472441941)
M1 = (18.4508057027546, 29.1425346052493)
N1 = (18.1689921926793, 29.3147539725175)
O1 = (17.7932408459121, 29.6278800948235)
P1 = (22.6466957416542, 35.4207133574833)
Q1 = (21.2219718851621, 34.9979930923702)
R1 = (21.2376281912774, 28.4693134422915)
S1 = (22.6780083538847, 28.4380008300609)
T1 = (24.5724213938357, 33.1975178891111)
U1 = (23.3512295168425, 32.8530791545746)
V1 = (23.3199169046119, 28.4380008300609)
W1 = (24.6663592305274, 28.3753756055997)
Z1 = (15.1942940307729, 35.4363696635986)
A2 = (14.7246048473139, 35.3737444391374)
B2 = (14.3645098066621, 35.1858687657538)
C2 = (14.1766341332786, 34.8570863373326)
D2 = (14.1140089088174, 34.3247719294125)
E2 = (14.2705719699703, 33.8394264398383)
F2 = (14.7246048473139, 33.6202381542241)
G2 = (15.4604512347329, 33.6045818481088)
H2 = (16.0, 34.0)
I2 = (15.9771093365377, 34.6848669700643)
J2 = (15.6170142958859, 35.2328376840997)
K2 = (24.1653574348379, 35.4520259697138)
L2 = (23.7739497819555, 35.4363696635986)
M2 = (23.4608236596496, 35.2641502963303)
N2 = (23.272947986266, 34.9040552556785)
O2 = (23.1320412312284, 34.5909291333725)
P2 = (23.1163849251131, 34.2151777866054)
Q2 = (23.2886042923813, 33.8081138276077)
R2 = (23.8209187003014, 33.6045818481088)
S2 = (24.3062641898756, 33.5576129297629)
T2 = (24.7602970672192, 33.8550827459536)
U2 = (25.010797965064, 34.4656786844502)
V2 = (24.8385785977957, 34.9666804801397)
W2 = (24.5254524754898, 35.2641502963303)
Z2 = (25.3708930057158, 37.4716894585871)
A3 = (24.7916096794498, 37.3464390096648)
B3 = (24.4471709449133, 36.9550313567823)
C3 = (24.3062641898756, 36.5636237038999)
D3 = (24.4941398632592, 35.9999966837492)
E3 = (25.0264542711793, 35.5929327247515)
F3 = (25.5587686790994, 35.5929327247515)
F3 = (25.5587686790994, 35.5929327247515)
G3 = (26.0, 36.0)
H3 = (26.1380520053653, 36.5792800100152)
I3 = (26.0, 37.0)
J3 = (25.7466443524829, 37.2838137852036)
K3 = (26.3885529032101, 35.4676822758291)
L3 = (25.9814889442124, 35.3580881330221)
M3 = (25.6840191280217, 35.1858687657538)
N3 = (25.5274560668688, 34.9040552556785)
O3 = (25.4961434546382, 34.5596165211419)
P3 = (25.5274560668688, 34.246490398836)
Q3 = (25.6683628219064, 33.8394264398383)
R3 = (26.0284578625583, 33.6358944603394)
S3 = (26.5451159643631, 33.6202381542241)
T3 = (27.0, 34.0)
U3 = (27.280962351782, 34.5596165211419)
V3 = (27.0304614539373, 35.2171813779844)
W3 = (26.1693646175959, 33.087923746304)
Z3 = (26.0, 33.0)
A4 = (25.5274560668688, 32.7278287056522)
B4 = (25.2612988629087, 32.4147025833463)
C4 = (25.1830173323322, 32.0702638488098)
D4 = (25.2299862506781, 31.7727940326191)
E4 = (25.6527065157911, 31.5222931347744)
F4 = (26.2946150665183, 31.7258251142732)
G4 = (26.5607722704784, 32.5086404200381)
H4 = (27.1557119028596, 32.7434850117675)
I4 = (27.6097447802033, 32.4929841139228)
J4 = (27.6410573924338, 32.1015764610403)
K4 = (27.7193389230103, 31.6005746653509)
L4 = (27.437525412935, 31.4283552980826)
M4 = (26.9834925355914, 31.2561359308143)
N4 = (26.5764285765937, 31.0995728696614)
O4 = (26.0441141686736, 30.7864467473554)
P4 = (25.6527065157911, 30.5672584617413)
Q4 = (25.3239240873699, 30.1915071149741)
R4 = (25.1673610262169, 29.8783809926682)
S4 = (25.1047358017558, 29.6122237887082)
T4 = (25.0890794956405, 29.1895035235952)
U4 = (25.2926114751393, 28.8294084829433)
V4 = (25.6840191280217, 28.5632512789833)
W4 = (26.1537083114806, 28.3753756055997)
Z4 = (26.8269294744384, 28.391031911715)
A5 = (27.4844943312809, 28.6102201973292)
B5 = (27.7342002330051, 28.7239579596219)
C5 = (27.7264126450755, 28.4202565942047)
D5 = (29.1825559185446, 28.3922538389457)
E5 = (29.1545531632856, 32.2146299318021)
F5 = (29.000538009361, 32.5786657501693)
G5 = (28.6785063238822, 32.9006974356481)
H5 = (28.3144705055149, 33.0827153448317)
I5 = (27.9084305542591, 33.2367304987563)
J5 = (27.3343740714492, 33.3207387645334)
K5 = (26.8303244767868, 33.2367304987563)
L5 = (27.6564057569279, 30.786489413592)
M5 = (27.6984098898165, 30.3944508399657)
N5 = (27.6984098898165, 29.7363860913787)
O5 = (27.5863988687804, 29.4143544059)
P5 = (27.2643671833016, 29.2043337414573)
Q5 = (26.9843396307114, 29.1763309861983)
R5 = (26.6903107004917, 29.3163447624934)
S5 = (26.5782996794556, 29.7503874690082)
T5 = (26.7603175886393, 30.3384453294476)
U5 = (27.3203726938197, 30.7024811478149)
J_curve = [[C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, C]]
U_curve = [[T, U, V, W, Z, A1, B1, C1, D1, E1, F1, G1, H1, I1, J1, K1, L1, M1, N1, O1, T]]
L_curve = [[P1, Q1, R1, S1, P1]]
I_curve = [[T1, U1, V1, W1, T1]]
A_curve_outline = [[
K5, W3, Z3, A4, B4, C4, D4, E4, F4, G4, H4, I4, J4, K4, L4, M4, N4,
O4, P4, Q4, R4, S4, T4, U4, V4, W4, Z4, A5, B5, C5, D5, E5, F5, G5,
H5, I5, J5, K5]]
A_curve_hole = [[L5, M5, N5, O5, P5, Q5, R5, S5, T5, U5, L5]]
dot_1 = [[Z1, A2, B2, C2, D2, E2, F2, G2, H2, I2, J2, Z1]]
dot_2 = [[Z2, A3, B3, C3, D3, E3, F3, G3, H3, I3, J3, Z2]]
dot_3 = [[K2, L2, M2, N2, O2, P2, Q2, R2, S2, T2, U2, V2, W2, K2]]
dot_4 = [[K3, L3, M3, N3, O3, P3, Q3, R3, S3, T3, U3, V3, K3]]
curves = [J_curve, U_curve, L_curve, I_curve, A_curve_outline, A_curve_hole, dot_1, dot_2, dot_3, dot_4]
nodes, points = convert_boundary_points_to_indices(curves)
tri = triangulate(points; boundary_nodes=nodes, check_arguments=false)
@test DT.is_positively_oriented(tri, 1)
@test DT.is_positively_oriented(tri, 2)
@test DT.is_positively_oriented(tri, 3)
@test DT.is_positively_oriented(tri, 4)
@test DT.is_positively_oriented(tri, 5)
@test !DT.is_positively_oriented(tri, 6)
@test DT.is_positively_oriented(tri, 7)
@test DT.is_positively_oriented(tri, 8)
@test DT.is_positively_oriented(tri, 9)
@test DT.is_positively_oriented(tri, 10)
@test DT.num_curves(tri) == 10
end

2 comments on commit db0bfac

@DanielVandH
Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@JuliaRegistrator
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Registration pull request created: JuliaRegistries/General/89651

After the above pull request is merged, it is recommended that a tag is created on this repository for the registered package version.

This will be done automatically if the Julia TagBot GitHub Action is installed, or can be done manually through the github interface, or via:

git tag -a v0.8.7 -m "<description of version>" db0bface0c81db7a2d5a66092656e1ba9a171fbd
git push origin v0.8.7

Please sign in to comment.