-
Notifications
You must be signed in to change notification settings - Fork 6
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
02ca17f
commit b3e3969
Showing
10 changed files
with
980 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,18 @@ | ||
archs = { | ||
"Amazon" : { | ||
"source" : ([[4, 3, 2, 0]], [[1, 1, 9, 9, 0, 8]]), | ||
"target" : ([[5, 4, 2, 1]], [[9, 2, 7, 9, 8, 6]]) | ||
}, | ||
"Yelp" : { | ||
"source" : ([[6, 5, 4, 3]], [[9, 4, 10, 10, 9, 9]]), | ||
"target" : ([[4, 5, 9, 2]], [[3, 2, 8, 10, 5, 10]]) | ||
}, | ||
"Douban_Movie" : { | ||
"source" : ([[5, 7, 0, 1]], [[6, 0, 3, 11, 12, 11]]), | ||
"target" : ([[10, 0, 9, 2]], [[7, 5, 6, 12, 11, 5]]) | ||
}, | ||
"Try" : { | ||
"source" : ([[3, 6, 9, 3], [3, 7, 0]], [[10, 9, 5, 3, 10, 1], [9, 9, 9]]), | ||
"target" : ([[6, 3, 6, 2], [4, 4, 7]], [[5, 6, 10, 5, 7, 10], [1, 2, 10]]) | ||
} | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,84 @@ | ||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
import numpy as np | ||
|
||
class Op(nn.Module): | ||
|
||
def __init__(self): | ||
super(Op, self).__init__() | ||
|
||
def forward(self, x, adjs, idx): | ||
return torch.spmm(adjs[idx], x) | ||
|
||
class Cell(nn.Module): | ||
|
||
def __init__(self, n_step, n_hid_prev, n_hid, use_norm = True, use_nl = True): | ||
super(Cell, self).__init__() | ||
|
||
self.affine = nn.Linear(n_hid_prev, n_hid) | ||
self.n_step = n_step | ||
self.norm = nn.LayerNorm(n_hid) if use_norm is True else lambda x : x | ||
self.use_nl = use_nl | ||
self.ops_seq = nn.ModuleList() | ||
self.ops_res = nn.ModuleList() | ||
for i in range(self.n_step): | ||
self.ops_seq.append(Op()) | ||
for i in range(1, self.n_step): | ||
for j in range(i): | ||
self.ops_res.append(Op()) | ||
|
||
def forward(self, x, adjs, idxes_seq, idxes_res): | ||
|
||
x = self.affine(x) | ||
states = [x] | ||
offset = 0 | ||
for i in range(self.n_step): | ||
seqi = self.ops_seq[i](states[i], adjs[:-1], idxes_seq[i]) #! exclude zero Op | ||
resi = sum(self.ops_res[offset + j](h, adjs, idxes_res[offset + j]) for j, h in enumerate(states[:i])) | ||
offset += i | ||
states.append(seqi + resi) | ||
#assert(offset == len(self.ops_res)) | ||
|
||
output = self.norm(states[-1]) | ||
if self.use_nl: | ||
output = F.gelu(output) | ||
return output | ||
|
||
|
||
class Model(nn.Module): | ||
|
||
def __init__(self, in_dims, n_hid, n_steps, dropout = None, attn_dim = 64, use_norm = True, out_nl = True): | ||
super(Model, self).__init__() | ||
self.n_hid = n_hid | ||
self.ws = nn.ModuleList() | ||
assert(isinstance(in_dims, list)) | ||
for i in range(len(in_dims)): | ||
self.ws.append(nn.Linear(in_dims[i], n_hid)) | ||
assert(isinstance(n_steps, list)) | ||
self.metas = nn.ModuleList() | ||
for i in range(len(n_steps)): | ||
self.metas.append(Cell(n_steps[i], n_hid, n_hid, use_norm = use_norm, use_nl = out_nl)) | ||
|
||
#* [Optional] Combine more than one meta graph? | ||
self.attn_fc1 = nn.Linear(n_hid, attn_dim) | ||
self.attn_fc2 = nn.Linear(attn_dim, 1) | ||
|
||
self.feats_drop = nn.Dropout(dropout) if dropout is not None else lambda x : x | ||
|
||
def forward(self, node_feats, node_types, adjs, idxes_seq, idxes_res): | ||
hid = torch.zeros((node_types.size(0), self.n_hid)).cuda() | ||
for i in range(len(node_feats)): | ||
hid[node_types == i] = self.ws[i](node_feats[i]) | ||
hid = self.feats_drop(hid) | ||
temps = []; attns = [] | ||
for i, meta in enumerate(self.metas): | ||
hidi = meta(hid, adjs, idxes_seq[i], idxes_res[i]) | ||
temps.append(hidi) | ||
attni = self.attn_fc2(torch.tanh(self.attn_fc1(temps[-1]))) | ||
attns.append(attni) | ||
|
||
hids = torch.stack(temps, dim=0).transpose(0, 1) | ||
attns = F.softmax(torch.cat(attns, dim=-1), dim=-1) | ||
out = (attns.unsqueeze(dim=-1) * hids).sum(dim=1) | ||
return out |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,206 @@ | ||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
import numpy as np | ||
|
||
class Op(nn.Module): | ||
|
||
def __init__(self): | ||
super(Op, self).__init__() | ||
|
||
def forward(self, x, adjs, ws, idx): | ||
#assert(ws.size(0) == len(adjs)) | ||
return ws[idx] * torch.spmm(adjs[idx], x) | ||
|
||
class Cell(nn.Module): | ||
|
||
def __init__(self, n_step, n_hid_prev, n_hid, cstr, use_norm = True, use_nl = True): | ||
super(Cell, self).__init__() | ||
|
||
self.affine = nn.Linear(n_hid_prev, n_hid) | ||
self.n_step = n_step | ||
self.norm = nn.LayerNorm(n_hid, elementwise_affine = False) if use_norm is True else lambda x : x | ||
self.use_nl = use_nl | ||
assert(isinstance(cstr, list)) | ||
self.cstr = cstr | ||
|
||
self.ops_seq = nn.ModuleList() ##! exclude last step | ||
for i in range(self.n_step - 1): | ||
self.ops_seq.append(Op()) | ||
self.ops_res = nn.ModuleList() ##! exclude last step | ||
for i in range(1, self.n_step - 1): | ||
for j in range(i): | ||
self.ops_res.append(Op()) | ||
|
||
self.last_seq = Op() | ||
self.last_res = nn.ModuleList() | ||
for i in range(self.n_step - 1): | ||
self.last_res.append(Op()) | ||
|
||
|
||
def forward(self, x, adjs, ws_seq, idxes_seq, ws_res, idxes_res): | ||
#assert(isinstance(ws_seq, list)) | ||
#assert(len(ws_seq) == 2) | ||
x = self.affine(x) | ||
states = [x] | ||
offset = 0 | ||
for i in range(self.n_step - 1): | ||
seqi = self.ops_seq[i](states[i], adjs[:-1], ws_seq[0][i], idxes_seq[0][i]) #! exclude zero Op | ||
resi = sum(self.ops_res[offset + j](h, adjs, ws_res[0][offset + j], idxes_res[0][offset + j]) for j, h in enumerate(states[:i])) | ||
offset += i | ||
states.append(seqi + resi) | ||
#assert(offset == len(self.ops_res)) | ||
|
||
adjs_cstr = [adjs[i] for i in self.cstr] | ||
out_seq = self.last_seq(states[-1], adjs_cstr, ws_seq[1], idxes_seq[1]) | ||
adjs_cstr.append(adjs[-1]) | ||
out_res = sum(self.last_res[i](h, adjs_cstr, ws_res[1][i], idxes_res[1][i]) for i, h in enumerate(states[:-1])) | ||
output = self.norm(out_seq + out_res) | ||
if self.use_nl: | ||
output = F.gelu(output) | ||
return output | ||
|
||
|
||
class Model(nn.Module): | ||
|
||
def __init__(self, in_dims, n_hid, n_adjs, n_steps, cstr, attn_dim = 64, use_norm = True, out_nl = True): | ||
super(Model, self).__init__() | ||
self.cstr = cstr | ||
self.n_adjs = n_adjs | ||
self.n_hid = n_hid | ||
self.ws = nn.ModuleList() | ||
assert(isinstance(in_dims, list)) | ||
for i in range(len(in_dims)): | ||
self.ws.append(nn.Linear(in_dims[i], n_hid)) | ||
assert(isinstance(n_steps, list)) | ||
self.metas = nn.ModuleList() | ||
for i in range(len(n_steps)): | ||
self.metas.append(Cell(n_steps[i], n_hid, n_hid, cstr, use_norm = use_norm, use_nl = out_nl)) | ||
|
||
self.as_seq = [] | ||
self.as_last_seq = [] | ||
for i in range(len(n_steps)): | ||
if n_steps[i] > 1: | ||
ai = 1e-3 * torch.randn(n_steps[i] - 1, n_adjs - 1) #! exclude zero Op | ||
ai = ai.cuda() | ||
ai.requires_grad_(True) | ||
self.as_seq.append(ai) | ||
else: | ||
self.as_seq.append(None) | ||
ai_last = 1e-3 * torch.randn(len(cstr)) | ||
ai_last = ai_last.cuda() | ||
ai_last.requires_grad_(True) | ||
self.as_last_seq.append(ai_last) | ||
|
||
ks = [sum(1 for i in range(1, n_steps[k] - 1) for j in range(i)) for k in range(len(n_steps))] | ||
self.as_res = [] | ||
self.as_last_res = [] | ||
for i in range(len(n_steps)): | ||
if ks[i] > 0: | ||
ai = 1e-3 * torch.randn(ks[i], n_adjs) | ||
ai = ai.cuda() | ||
ai.requires_grad_(True) | ||
self.as_res.append(ai) | ||
else: | ||
self.as_res.append(None) | ||
|
||
if n_steps[i] > 1: | ||
ai_last = 1e-3 * torch.randn(n_steps[i] - 1, len(cstr) + 1) | ||
ai_last = ai_last.cuda() | ||
ai_last.requires_grad_(True) | ||
self.as_last_res.append(ai_last) | ||
else: | ||
self.as_last_res.append(None) | ||
|
||
assert(ks[0] + n_steps[0] + (0 if self.as_last_res[0] is None else self.as_last_res[0].size(0)) == (1 + n_steps[0]) * n_steps[0] // 2) | ||
|
||
#* [Optional] Combine more than one meta graph? | ||
self.attn_fc1 = nn.Linear(n_hid, attn_dim) | ||
self.attn_fc2 = nn.Linear(attn_dim, 1) | ||
|
||
def alphas(self): | ||
alphas = [] | ||
for each in self.as_seq: | ||
if each is not None: | ||
alphas.append(each) | ||
for each in self.as_last_seq: | ||
alphas.append(each) | ||
for each in self.as_res: | ||
if each is not None: | ||
alphas.append(each) | ||
for each in self.as_last_res: | ||
if each is not None: | ||
alphas.append(each) | ||
return alphas | ||
|
||
def sample(self, eps): | ||
idxes_seq = [] | ||
idxes_res = [] | ||
if np.random.uniform() < eps: | ||
for i in range(len(self.metas)): | ||
temp = [] | ||
temp.append(None if self.as_seq[i] is None else torch.randint(low=0, high=self.as_seq[i].size(-1), size=self.as_seq[i].size()[:-1]).cuda()) | ||
temp.append(torch.randint(low=0, high=self.as_last_seq[i].size(-1), size=(1,)).cuda()) | ||
idxes_seq.append(temp) | ||
for i in range(len(self.metas)): | ||
temp = [] | ||
temp.append(None if self.as_res[i] is None else torch.randint(low=0, high=self.as_res[i].size(-1), size=self.as_res[i].size()[:-1]).cuda()) | ||
temp.append(None if self.as_last_res[i] is None else torch.randint(low=0, high=self.as_last_res[i].size(-1), size=self.as_last_res[i].size()[:-1]).cuda()) | ||
idxes_res.append(temp) | ||
else: | ||
for i in range(len(self.metas)): | ||
temp = [] | ||
temp.append(None if self.as_seq[i] is None else torch.argmax(F.softmax(self.as_seq[i], dim=-1), dim=-1)) | ||
temp.append(torch.argmax(F.softmax(self.as_last_seq[i], dim=-1), dim=-1)) | ||
idxes_seq.append(temp) | ||
for i in range(len(self.metas)): | ||
temp = [] | ||
temp.append(None if self.as_res[i] is None else torch.argmax(F.softmax(self.as_res[i], dim=-1), dim=-1)) | ||
temp.append(None if self.as_last_res[i] is None else torch.argmax(F.softmax(self.as_last_res[i], dim=-1), dim=-1)) | ||
idxes_res.append(temp) | ||
return idxes_seq, idxes_res | ||
|
||
def forward(self, node_feats, node_types, adjs, idxes_seq, idxes_res): | ||
hid = torch.zeros((node_types.size(0), self.n_hid)).cuda() | ||
for i in range(len(node_feats)): | ||
hid[node_types == i] = self.ws[i](node_feats[i]) | ||
temps = []; attns = [] | ||
for i, meta in enumerate(self.metas): | ||
ws_seq = [] | ||
ws_seq.append(None if self.as_seq[i] is None else F.softmax(self.as_seq[i], dim=-1)) | ||
ws_seq.append(F.softmax(self.as_last_seq[i], dim=-1)) | ||
ws_res = [] | ||
ws_res.append(None if self.as_res[i] is None else F.softmax(self.as_res[i], dim=-1)) | ||
ws_res.append(None if self.as_last_res[i] is None else F.softmax(self.as_last_res[i], dim=-1)) | ||
hidi = meta(hid, adjs, ws_seq, idxes_seq[i], ws_res, idxes_res[i]) | ||
temps.append(hidi) | ||
attni = self.attn_fc2(torch.tanh(self.attn_fc1(temps[-1]))) | ||
attns.append(attni) | ||
|
||
hids = torch.stack(temps, dim=0).transpose(0, 1) | ||
attns = F.softmax(torch.cat(attns, dim=-1), dim=-1) | ||
out = (attns.unsqueeze(dim=-1) * hids).sum(dim=1) | ||
return out | ||
|
||
def parse(self): | ||
idxes_seq, idxes_res = self.sample(0.) | ||
msg_seq = []; msg_res = [] | ||
for i in range(len(idxes_seq)): | ||
map_seq = [self.cstr[idxes_seq[i][1].item()]] | ||
msg_seq.append(map_seq if idxes_seq[i][0] is None else idxes_seq[i][0].tolist() + map_seq) | ||
assert(len(msg_seq[i]) == self.metas[i].n_step) | ||
|
||
temp_res = [] | ||
if idxes_res[i][1] is not None: | ||
for item in idxes_res[i][1].tolist(): | ||
if item < len(self.cstr): | ||
temp_res.append(self.cstr[item]) | ||
else: | ||
assert(item == len(self.cstr)) | ||
temp_res.append(self.n_adjs - 1) | ||
if idxes_res[i][0] is not None: | ||
temp_res = idxes_res[i][0].tolist() + temp_res | ||
assert(len(temp_res) == self.metas[i].n_step * (self.metas[i].n_step - 1) // 2) | ||
msg_res.append(temp_res) | ||
|
||
return msg_seq, msg_res |
Oops, something went wrong.