Skip to content

LP2006/Simplify.jl

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Simplify.jl

Travis Build Status AppVeyor Build Status Coverage Status

Simplify.jl implements methods for symbolic algebraic simplification in the Julia language.

Examples

Normalization involves determining the unique normal form of an expression ("simplest" equivalent expression) through repeated application of rules. Simplify.jl will use its internal set of algebraic rules by default, which includes trigonometry, logarithms, differentiation (based on DiffRules.jl), and more.

julia> @syms x y b θ;

julia> normalize(@term(1 / (sin(-θ) / cos(-θ))))
@term(1 / (-(sin(θ)) / cos(θ)))

julia> normalize(@term(log(b, 1 / (b^abs(x^2)))))
@term(log(b, 1 / b ^ abs(x ^ 2)))

julia> normalize(@term(diff(sin(2x) - log(x+y), x)))
@term(1 * -(inv(x + y) * (1 * diff(y, x) + 1 * one(x))) + 1 * cos(2x) * (2 * one(x) + x * 0))

julia> normalize(@term(!x & x | (y & (y | true))))
@term(!x & x | (y | true) & y)

julia> normalize(@term(y^(6 - 3log(x, x^2))))
@term(y ^ (-(6 * log(x, x)) + 6))

In many cases, it is useful to specify entirely custom rules by passing a Term Rewriting System as the second argument to normalize. This may be done either by manually constructing a Rules object or by using the RULES strategy for @term.

julia> @syms f g h;
       @vars x y;

julia> normalize(@term(f(x, f(y, y))), @term RULES [
          f(x, x) => 1
          f(x, 1) => x
       ])
@term(x)

julia> normalize(@term(f(g(f(1), h()))), Rules(
          @term(f(x)) => @term(x),
          @term(h())  => @term(3),
       ))
@term(g(1, 3))

julia> using Simplify: EvalRule

julia> normalize(@term(f(g(f(1), h()))), Rules(
          @term(f(x)) => @term(x),
          @term(h())  => @term(3),
          EvalRule(g, (a, b) -> 2a + b)
       ))
@term(5)

Variables may contain information about their domain, which may result in more specific normalizations.

julia> using SpecialSets

julia> @syms x y z;

julia> ctx = [get_context(); Image(y, GreaterThan(3)); Image(z, Even  LessThan(0))];

julia> with_context(ctx) do
           normalize(@term(abs(x)))
       end
@term(abs(x))

julia> with_context(ctx) do
           normalize(@term(abs(y)))
       end
@term(y)

julia> with_context(ctx) do
           normalize(@term(abs(z)))
       end
@term(-z)
julia> ctx = [get_context(); Image(x, TypeSet(Int)); Image(y, TypeSet(Int))];

julia> with_context(ctx) do
           normalize(@term(diff(sin(2x) - log(x + y), x)))
       end
@term(cos(2x) * 2 + -(inv(x + y) * (diff(y, x) + 1)))

Acknowledgements

About

Algebraic simplification in Julia

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Julia 100.0%