Skip to content

A Automatic Plate Recognition Verification Web application using custom trained YOLOv4 CNN model

License

Notifications You must be signed in to change notification settings

LeandroMartinMacato/SecureV-App

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

55 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SecureV

logo


About

A Automatic Plate Recognition Verification Web application using custom trained YOLOv4 CNN model


Technologies Used

Frontend

  • Bootstrap
  • CSS3
  • JavaScript

Backend/Database

  • Python
  • Flask
  • SQLite

Machine Learning Tech

  • YoloV4
  • Tesseract

Installation

1. Clone Repository

git clone https://github.com/LeandroMartinMacato/SecureV-App

2. pip install requirements

pip install -r requirements.txt

3. Download YOLOv4 Model and Place inside directory

Download: YOLOv4 Weights

  • Place yolov4.weights in
./app/models/~

4. Install Tesseract on local machine

Download: Tesseract

4.1 Set tesseract.exe path in object_detection.py file

  • on object_detection.py
tess.pytesseract.tesseract_cmd = r"E:\Programming_Files\OCR-Tesseract\tesseract.exe"
4.2 [OPTIONAL] Download Tesseract Trained Model on FE-Schrift Font and place in tesseract installation folder

Download: Custom Trained Tesseract Model

  • Place bestphplate.traineddata in
tesseract_installation_folder/tessdata/

5. Run Flask Server

./cd app
./app python app.py

Screenshots

live-preview database-preview
register-preview log-preview

License & Copyright

Licensed under the MIT License

About

A Automatic Plate Recognition Verification Web application using custom trained YOLOv4 CNN model

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published