Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Conditionally use prologue in test_vjp_correctness #1438

Merged
merged 3 commits into from
Nov 18, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
24 changes: 19 additions & 5 deletions thunder/tests/test_grad.py
Original file line number Diff line number Diff line change
Expand Up @@ -266,7 +266,7 @@ def _dot(x, y):
return sum([_tensor_dot(a, b) for a, b in zip(x, y)])


def check_vjp(f, *primals, comp, executor="torch", set_compile_data: bool = False):
def check_vjp(f, *primals, comp, executor="torch", set_compile_data: bool = False, prologue_required: bool = False):
"""Check that the vector-Jacobian product of a function is correct.

Args:
Expand Down Expand Up @@ -296,15 +296,21 @@ def check_vjp(f, *primals, comp, executor="torch", set_compile_data: bool = Fals

u = tree_map(make, primals)

comp_f = thunder.jit(f, disable_torch_autograd=True)
# dirty little trick for speed: skip the prologue, however, the prologue is required when
# there are non-differentiable kwargs
jf = executor.make_callable(f, disable_torch_autograd=True)
if prologue_required:
comp_f = thunder.jit(f, disable_torch_autograd=True)
else:
comp_f = thunder.compile_data(jf).get_computation_and_inputs(*primals)[0].computation_fn

outs_p, J_u = numerical_jvp(comp_f)(primals, u)

multiple_results = isinstance(outs_p, Sequence)

v = tree_map(make, outs_p)
if set_compile_data:
with thunder.core.compile_data.compile_data_and_stats(thunder.compile_data(comp_f), None):
with thunder.core.compile_data.compile_data_and_stats(thunder.compile_data(jf), None):
initial_trace_vjp_f = thunder.trace()(vjp(f), primals, v)
else:
initial_trace_vjp_f = thunder.trace()(vjp(f), primals, v)
Expand Down Expand Up @@ -364,8 +370,15 @@ def wrapper(*differentiable_args):
return wrapper, filtered_args


def snippet_vjp_correctness(func, args, comp, executor, set_compile_data):
check_vjp(func, *args, comp=comp, executor=executor, set_compile_data=set_compile_data)
def snippet_vjp_correctness(func, args, comp, executor, set_compile_data, prologue_required):
check_vjp(
func,
*args,
comp=comp,
executor=executor,
set_compile_data=set_compile_data,
prologue_required=prologue_required,
)


# TODO Use the given comparator
Expand Down Expand Up @@ -408,6 +421,7 @@ def test_vjp_correctness(op, device, dtype, executor, comp):
comp,
executor,
"adaptive_avg_pool2d" in op.name,
len(sample.kwargs) != 0,
)
if result is not None:
return result
Expand Down
Loading