Skip to content

Commit

Permalink
[pre-commit.ci] pre-commit suggestions (#321)
Browse files Browse the repository at this point in the history
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Jirka Borovec <[email protected]>
Co-authored-by: jirka <[email protected]>
  • Loading branch information
3 people authored Jul 18, 2024
1 parent 4338f20 commit d047ff8
Show file tree
Hide file tree
Showing 11 changed files with 38 additions and 38 deletions.
8 changes: 4 additions & 4 deletions .pre-commit-config.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@ ci:

repos:
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: v4.5.0
rev: v4.6.0
hooks:
- id: end-of-file-fixer
- id: trailing-whitespace
Expand All @@ -23,7 +23,7 @@ repos:
- id: detect-private-key

- repo: https://github.com/codespell-project/codespell
rev: v2.2.6
rev: v2.3.0
hooks:
- id: codespell
additional_dependencies: [tomli]
Expand All @@ -37,7 +37,7 @@ repos:
args: ["--in-place"]

- repo: https://github.com/pre-commit/mirrors-prettier
rev: v3.1.0
rev: v4.0.0-alpha.8
hooks:
- id: prettier
files: \.(json|yml|yaml|toml)
Expand All @@ -54,7 +54,7 @@ repos:
- mdformat_frontmatter

- repo: https://github.com/astral-sh/ruff-pre-commit
rev: v0.3.5
rev: v0.5.0
hooks:
# try to fix what is possible
- id: ruff
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -87,7 +87,7 @@
os.makedirs(file_path.rsplit("/", 1)[0], exist_ok=True)
if not os.path.isfile(file_path):
file_url = base_url + file_name
print("Downloading %s..." % file_url)
print(f"Downloading {file_url}...")
try:
urllib.request.urlretrieve(file_url, file_path)
except HTTPError as e:
Expand Down Expand Up @@ -796,7 +796,7 @@ def _create_model(self):
num_heads=self.hparams.num_heads,
dropout=self.hparams.dropout,
)
# Output classifier per sequence lement
# Output classifier per sequence element
self.output_net = nn.Sequential(
nn.Linear(self.hparams.model_dim, self.hparams.model_dim),
nn.LayerNorm(self.hparams.model_dim),
Expand Down Expand Up @@ -948,8 +948,8 @@ def _calculate_loss(self, batch, mode="train"):
acc = (preds.argmax(dim=-1) == labels).float().mean()

# Logging
self.log("%s_loss" % mode, loss)
self.log("%s_acc" % mode, acc)
self.log(f"{mode}_loss", loss)
self.log(f"{mode}_acc", acc)
return loss, acc

def training_step(self, batch, batch_idx):
Expand Down Expand Up @@ -1419,8 +1419,8 @@ def _calculate_loss(self, batch, mode="train"):
preds = preds.squeeze(dim=-1) # Shape: [Batch_size, set_size]
loss = F.cross_entropy(preds, labels) # Softmax/CE over set dimension
acc = (preds.argmax(dim=-1) == labels).float().mean()
self.log("%s_loss" % mode, loss)
self.log("%s_acc" % mode, acc, on_step=False, on_epoch=True)
self.log(f"{mode}_loss", loss)
self.log(f"{mode}_acc", acc, on_step=False, on_epoch=True)
return loss, acc

def training_step(self, batch, batch_idx):
Expand Down
10 changes: 5 additions & 5 deletions course_UvA-DL/06-graph-neural-networks/GNN_overview.py
Original file line number Diff line number Diff line change
Expand Up @@ -61,7 +61,7 @@
os.makedirs(file_path.rsplit("/", 1)[0], exist_ok=True)
if not os.path.isfile(file_path):
file_url = base_url + file_name
print("Downloading %s..." % file_url)
print(f"Downloading {file_url}...")
try:
urllib.request.urlretrieve(file_url, file_path)
except HTTPError as e:
Expand Down Expand Up @@ -616,7 +616,7 @@ def forward(self, data, mode="train"):
elif mode == "test":
mask = data.test_mask
else:
assert False, "Unknown forward mode: %s" % mode
assert False, f"Unknown forward mode: {mode}"

loss = self.loss_module(x[mask], data.y[mask])
acc = (x[mask].argmax(dim=-1) == data.y[mask]).sum().float() / mask.sum()
Expand Down Expand Up @@ -671,7 +671,7 @@ def train_node_classifier(model_name, dataset, **model_kwargs):
trainer.logger._default_hp_metric = None # Optional logging argument that we don't need

# Check whether pretrained model exists. If yes, load it and skip training
pretrained_filename = os.path.join(CHECKPOINT_PATH, "NodeLevel%s.ckpt" % model_name)
pretrained_filename = os.path.join(CHECKPOINT_PATH, f"NodeLevel{model_name}.ckpt")
if os.path.isfile(pretrained_filename):
print("Found pretrained model, loading...")
model = NodeLevelGNN.load_from_checkpoint(pretrained_filename)
Expand Down Expand Up @@ -790,7 +790,7 @@ def print_results(result_dict):
# %%
print("Data object:", tu_dataset.data)
print("Length:", len(tu_dataset))
print("Average label: %4.2f" % (tu_dataset.data.y.float().mean().item()))
print(f"Average label: {tu_dataset.data.y.float().mean().item():4.2f}")

# %% [markdown]
# The first line shows how the dataset stores different graphs.
Expand Down Expand Up @@ -957,7 +957,7 @@ def train_graph_classifier(model_name, **model_kwargs):
trainer.logger._default_hp_metric = None

# Check whether pretrained model exists. If yes, load it and skip training
pretrained_filename = os.path.join(CHECKPOINT_PATH, "GraphLevel%s.ckpt" % model_name)
pretrained_filename = os.path.join(CHECKPOINT_PATH, f"GraphLevel{model_name}.ckpt")
if os.path.isfile(pretrained_filename):
print("Found pretrained model, loading...")
model = GraphLevelGNN.load_from_checkpoint(pretrained_filename)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -68,7 +68,7 @@
os.makedirs(file_path.rsplit("/", 1)[0], exist_ok=True)
if not os.path.isfile(file_path):
file_url = base_url + file_name
print("Downloading %s..." % file_url)
print(f"Downloading {file_url}...")
try:
urllib.request.urlretrieve(file_url, file_path)
except HTTPError as e:
Expand Down Expand Up @@ -770,7 +770,7 @@ def train_model(**kwargs):
rand_imgs = torch.rand((128,) + model.hparams.img_shape).to(model.device)
rand_imgs = rand_imgs * 2 - 1.0
rand_out = model.cnn(rand_imgs).mean()
print("Average score for random images: %4.2f" % (rand_out.item()))
print(f"Average score for random images: {rand_out.item():4.2f}")

# %% [markdown]
# As we hoped, the model assigns very low probability to those noisy images.
Expand All @@ -781,7 +781,7 @@ def train_model(**kwargs):
train_imgs, _ = next(iter(train_loader))
train_imgs = train_imgs.to(model.device)
train_out = model.cnn(train_imgs).mean()
print("Average score for training images: %4.2f" % (train_out.item()))
print(f"Average score for training images: {train_out.item():4.2f}")

# %% [markdown]
# The scores are close to 0 because of the regularization objective that was added to the training.
Expand All @@ -803,8 +803,8 @@ def compare_images(img1, img2):
plt.xticks([(img1.shape[2] + 2) * (0.5 + j) for j in range(2)], labels=["Original image", "Transformed image"])
plt.yticks([])
plt.show()
print("Score original image: %4.2f" % score1)
print("Score transformed image: %4.2f" % score2)
print(f"Score original image: {score1:4.2f}")
print(f"Score transformed image: {score2:4.2f}")


# %% [markdown]
Expand Down
2 changes: 1 addition & 1 deletion course_UvA-DL/08-deep-autoencoders/Deep_Autoencoders.py
Original file line number Diff line number Diff line change
Expand Up @@ -64,7 +64,7 @@
file_path = os.path.join(CHECKPOINT_PATH, file_name)
if not os.path.isfile(file_path):
file_url = base_url + file_name
print("Downloading %s..." % file_url)
print(f"Downloading {file_url}...")
try:
urllib.request.urlretrieve(file_url, file_path)
except HTTPError as e:
Expand Down
8 changes: 4 additions & 4 deletions course_UvA-DL/09-normalizing-flows/NF_image_modeling.py
Original file line number Diff line number Diff line change
Expand Up @@ -68,7 +68,7 @@
file_path = os.path.join(CHECKPOINT_PATH, file_name)
if not os.path.isfile(file_path):
file_url = base_url + file_name
print("Downloading %s..." % file_url)
print(f"Downloading {file_url}...")
try:
urllib.request.urlretrieve(file_url, file_path)
except HTTPError as e:
Expand Down Expand Up @@ -518,7 +518,7 @@ def visualize_dequantization(quants, prior=None):
plt.plot([inp[indices[0][-1]]] * 2, [0, prob[indices[0][-1]]], color=color)
x_ticks.append(inp[indices[0][0]])
x_ticks.append(inp.max())
plt.xticks(x_ticks, ["%.1f" % x for x in x_ticks])
plt.xticks(x_ticks, [f"{x:.1f}" for x in x_ticks])
plt.plot(inp, prob, color=(0.0, 0.0, 0.0))
# Set final plot properties
plt.ylim(0, prob.max() * 1.1)
Expand Down Expand Up @@ -1199,8 +1199,8 @@ def print_num_params(model):
table = [
[
key,
"%4.3f bpd" % flow_dict[key]["result"]["val"][0]["test_bpd"],
"%4.3f bpd" % flow_dict[key]["result"]["test"][0]["test_bpd"],
"{:4.3f} bpd".format(flow_dict[key]["result"]["val"][0]["test_bpd"]),
"{:4.3f} bpd".format(flow_dict[key]["result"]["test"][0]["test_bpd"]),
"%2.0f ms" % (1000 * flow_dict[key]["result"]["time"]),
"%2.0f ms" % (1000 * flow_dict[key]["result"].get("samp_time", 0)),
"{:,}".format(sum(np.prod(p.shape) for p in flow_dict[key]["model"].parameters())),
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -92,7 +92,7 @@
file_path = os.path.join(CHECKPOINT_PATH, file_name)
if not os.path.isfile(file_path):
file_url = base_url + file_name
print("Downloading %s..." % file_url)
print(f"Downloading {file_url}...")
try:
urllib.request.urlretrieve(file_url, file_path)
except HTTPError as e:
Expand Down
8 changes: 4 additions & 4 deletions course_UvA-DL/11-vision-transformer/Vision_Transformer.py
Original file line number Diff line number Diff line change
Expand Up @@ -69,7 +69,7 @@
os.makedirs(file_path.rsplit("/", 1)[0], exist_ok=True)
if not os.path.isfile(file_path):
file_url = base_url + file_name
print("Downloading %s..." % file_url)
print(f"Downloading {file_url}...")
try:
urllib.request.urlretrieve(file_url, file_path)
except HTTPError as e:
Expand Down Expand Up @@ -353,8 +353,8 @@ def _calculate_loss(self, batch, mode="train"):
loss = F.cross_entropy(preds, labels)
acc = (preds.argmax(dim=-1) == labels).float().mean()

self.log("%s_loss" % mode, loss)
self.log("%s_acc" % mode, acc)
self.log(f"{mode}_loss", loss)
self.log(f"{mode}_acc", acc)
return loss

def training_step(self, batch, batch_idx):
Expand Down Expand Up @@ -396,7 +396,7 @@ def train_model(**kwargs):
# Check whether pretrained model exists. If yes, load it and skip training
pretrained_filename = os.path.join(CHECKPOINT_PATH, "ViT.ckpt")
if os.path.isfile(pretrained_filename):
print("Found pretrained model at %s, loading..." % pretrained_filename)
print(f"Found pretrained model at {pretrained_filename}, loading...")
# Automatically loads the model with the saved hyperparameters
model = ViT.load_from_checkpoint(pretrained_filename)
else:
Expand Down
12 changes: 6 additions & 6 deletions course_UvA-DL/12-meta-learning/Meta_Learning.py
Original file line number Diff line number Diff line change
Expand Up @@ -92,7 +92,7 @@
os.makedirs(file_path.rsplit("/", 1)[0], exist_ok=True)
if not os.path.isfile(file_path):
file_url = base_url + file_name
print("Downloading %s..." % file_url)
print(f"Downloading {file_url}...")
try:
urllib.request.urlretrieve(file_url, file_path)
except HTTPError as e:
Expand Down Expand Up @@ -525,8 +525,8 @@ def calculate_loss(self, batch, mode):
preds, labels, acc = self.classify_feats(prototypes, classes, query_feats, query_targets)
loss = F.cross_entropy(preds, labels)

self.log("%s_loss" % mode, loss)
self.log("%s_acc" % mode, acc)
self.log(f"{mode}_loss", loss)
self.log(f"{mode}_acc", acc)
return loss

def training_step(self, batch, batch_idx):
Expand Down Expand Up @@ -573,7 +573,7 @@ def train_model(model_class, train_loader, val_loader, **kwargs):
# Check whether pretrained model exists. If yes, load it and skip training
pretrained_filename = os.path.join(CHECKPOINT_PATH, model_class.__name__ + ".ckpt")
if os.path.isfile(pretrained_filename):
print("Found pretrained model at %s, loading..." % pretrained_filename)
print(f"Found pretrained model at {pretrained_filename}, loading...")
# Automatically loads the model with the saved hyperparameters
model = model_class.load_from_checkpoint(pretrained_filename)
else:
Expand Down Expand Up @@ -947,8 +947,8 @@ def outer_loop(self, batch, mode="train"):
opt.step()
opt.zero_grad()

self.log("%s_loss" % mode, sum(losses) / len(losses))
self.log("%s_acc" % mode, sum(accuracies) / len(accuracies))
self.log(f"{mode}_loss", sum(losses) / len(losses))
self.log(f"{mode}_acc", sum(accuracies) / len(accuracies))

def training_step(self, batch, batch_idx):
self.outer_loop(batch, mode="train")
Expand Down
2 changes: 1 addition & 1 deletion course_UvA-DL/13-contrastive-learning/SimCLR.py
Original file line number Diff line number Diff line change
Expand Up @@ -760,7 +760,7 @@ def train_resnet(batch_size, max_epochs=100, **kwargs):
# Check whether pretrained model exists. If yes, load it and skip training
pretrained_filename = os.path.join(CHECKPOINT_PATH, "ResNet.ckpt")
if os.path.isfile(pretrained_filename):
print("Found pretrained model at %s, loading..." % pretrained_filename)
print(f"Found pretrained model at {pretrained_filename}, loading...")
model = ResNet.load_from_checkpoint(pretrained_filename)
else:
L.seed_everything(42) # To be reproducible
Expand Down
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
# %% [markdown]
# In this tutorial, we'll go over the basics of lightning Flash by finetuning/predictin with an ImageClassifier on [Hymenoptera Dataset](https://www.kaggle.com/ajayrana/hymenoptera-data) containing ants and bees images.
# In this tutorial, we'll go over the basics of lightning Flash by finetuning/prediction with an ImageClassifier on [Hymenoptera Dataset](https://www.kaggle.com/ajayrana/hymenoptera-data) containing ants and bees images.
#
# # Finetuning
#
Expand Down

0 comments on commit d047ff8

Please sign in to comment.