Skip to content

Commit

Permalink
Merge pull request #88 from saty-a/main
Browse files Browse the repository at this point in the history
Add: algoritms in java
  • Loading branch information
rhythmbhiwani authored Oct 7, 2023
2 parents 7dd18bb + 66841dd commit bdbccea
Show file tree
Hide file tree
Showing 4 changed files with 329 additions and 0 deletions.
Binary file added .DS_Store
Binary file not shown.
Binary file added Java/.DS_Store
Binary file not shown.
186 changes: 186 additions & 0 deletions Java/Algorithms/Dijkstra.java
Original file line number Diff line number Diff line change
@@ -0,0 +1,186 @@
// Java Program to Implement Dijkstra's Algorithm
// Using Priority Queue

// Importing utility classes
import java.util.*;

// Main class DPQ
public class Dijkstra {

// Member variables of this class
private int dist[];
private Set<Integer> settled;
private PriorityQueue<Node> pq;
// Number of vertices
private int V;
List<List<Node> > adj;

// Constructor of this class
public Dijkstra(int V)
{

// This keyword refers to current object itself
this.V = V;
dist = new int[V];
settled = new HashSet<Integer>();
pq = new PriorityQueue<Node>(V, new Node());
}

// Method 1
// Dijkstra's Algorithm
public void dijkstra(List<List<Node> > adj, int src)
{
this.adj = adj;

for (int i = 0; i < V; i++)
dist[i] = Integer.MAX_VALUE;

// Add source node to the priority queue
pq.add(new Node(src, 0));

// Distance to the source is 0
dist[src] = 0;

while (settled.size() != V) {

// Terminating condition check when
// the priority queue is empty, return
if (pq.isEmpty())
return;

// Removing the minimum distance node
// from the priority queue
int u = pq.remove().node;

// Adding the node whose distance is
// finalized
if (settled.contains(u))

// Continue keyword skips execution for
// following check
continue;

// We don't have to call e_Neighbors(u)
// if u is already present in the settled set.
settled.add(u);

e_Neighbours(u);
}
}

// Method 2
// To process all the neighbours
// of the passed node
private void e_Neighbours(int u)
{

int edgeDistance = -1;
int newDistance = -1;

// All the neighbors of v
for (int i = 0; i < adj.get(u).size(); i++) {
Node v = adj.get(u).get(i);

// If current node hasn't already been processed
if (!settled.contains(v.node)) {
edgeDistance = v.cost;
newDistance = dist[u] + edgeDistance;

// If new distance is cheaper in cost
if (newDistance < dist[v.node])
dist[v.node] = newDistance;

// Add the current node to the queue
pq.add(new Node(v.node, dist[v.node]));
}
}
}

// Main driver method
public static void main(String arg[])
{

int V = 5;
int source = 0;

// Adjacency list representation of the
// connected edges by declaring List class object
// Declaring object of type List<Node>
List<List<Node> > adj
= new ArrayList<List<Node> >();

// Initialize list for every node
for (int i = 0; i < V; i++) {
List<Node> item = new ArrayList<Node>();
adj.add(item);
}

// Inputs for the GFG(dpq) graph
adj.get(0).add(new Node(1, 9));
adj.get(0).add(new Node(2, 6));
adj.get(0).add(new Node(3, 5));
adj.get(0).add(new Node(4, 3));

adj.get(2).add(new Node(1, 2));
adj.get(2).add(new Node(3, 4));

// Calculating the single source shortest path
Dijkstra dpq = new Dijkstra(V);
dpq.dijkstra(adj, source);

// Printing the shortest path to all the nodes
// from the source node
System.out.println("The shorted path from node :");

for (int i = 0; i < dpq.dist.length; i++)
System.out.println(source + " to " + i + " is "
+ dpq.dist[i]);
}
}

// Class 2
// Helper class implementing Comparator interface
// Representing a node in the graph
class Node implements Comparator<Node> {

// Member variables of this class
public int node;
public int cost;

// Constructors of this class

// Constructor 1
public Node() {}

// Constructor 2
public Node(int node, int cost)
{

// This keyword refers to current instance itself
this.node = node;
this.cost = cost;
}

// Method 1
@Override public int compare(Node node1, Node node2)
{

if (node1.cost < node2.cost)
return -1;

if (node1.cost > node2.cost)
return 1;

return 0;
}
}

/// The Output will be
/*
The shorted path from node :
0 to 0 is 0
0 to 1 is 8
0 to 2 is 6
0 to 3 is 5
0 to 4 is 3
*/
143 changes: 143 additions & 0 deletions Java/Algorithms/KruskalsMST.java
Original file line number Diff line number Diff line change
@@ -0,0 +1,143 @@
// Java program for Kruskal's algorithm

import java.util.ArrayList;
import java.util.Comparator;
import java.util.List;

public class KruskalsMST {

// Defines edge structure
static class Edge {
int src, dest, weight;

public Edge(int src, int dest, int weight)
{
this.src = src;
this.dest = dest;
this.weight = weight;
}
}

// Defines subset element structure
static class Subset {
int parent, rank;

public Subset(int parent, int rank)
{
this.parent = parent;
this.rank = rank;
}
}

// Starting point of program execution
public static void main(String[] args)
{
int V = 4;
List<Edge> graphEdges = new ArrayList<Edge>(
List.of(new Edge(0, 1, 10), new Edge(0, 2, 6),
new Edge(0, 3, 5), new Edge(1, 3, 15),
new Edge(2, 3, 4)));

// Sort the edges in non-decreasing order
// (increasing with repetition allowed)
graphEdges.sort(new Comparator<Edge>() {
@Override public int compare(Edge o1, Edge o2)
{
return o1.weight - o2.weight;
}
});

kruskals(V, graphEdges);
}

// Function to find the MST
private static void kruskals(int V, List<Edge> edges)
{
int j = 0;
int noOfEdges = 0;

// Allocate memory for creating V subsets
Subset subsets[] = new Subset[V];

// Allocate memory for results
Edge results[] = new Edge[V];

// Create V subsets with single elements
for (int i = 0; i < V; i++) {
subsets[i] = new Subset(i, 0);
}

// Number of edges to be taken is equal to V-1
while (noOfEdges < V - 1) {

// Pick the smallest edge. And increment
// the index for next iteration
Edge nextEdge = edges.get(j);
int x = findRoot(subsets, nextEdge.src);
int y = findRoot(subsets, nextEdge.dest);

// If including this edge doesn't cause cycle,
// include it in result and increment the index
// of result for next edge
if (x != y) {
results[noOfEdges] = nextEdge;
union(subsets, x, y);
noOfEdges++;
}

j++;
}

// Print the contents of result[] to display the
// built MST
System.out.println(
"Following are the edges of the constructed MST:");
int minCost = 0;
for (int i = 0; i < noOfEdges; i++) {
System.out.println(results[i].src + " -- "
+ results[i].dest + " == "
+ results[i].weight);
minCost += results[i].weight;
}
System.out.println("Total cost of MST: " + minCost);
}

// Function to unite two disjoint sets
private static void union(Subset[] subsets, int x,
int y)
{
int rootX = findRoot(subsets, x);
int rootY = findRoot(subsets, y);

if (subsets[rootY].rank < subsets[rootX].rank) {
subsets[rootY].parent = rootX;
}
else if (subsets[rootX].rank
< subsets[rootY].rank) {
subsets[rootX].parent = rootY;
}
else {
subsets[rootY].parent = rootX;
subsets[rootX].rank++;
}
}

// Function to find parent of a set
private static int findRoot(Subset[] subsets, int i)
{
if (subsets[i].parent == i)
return subsets[i].parent;

subsets[i].parent
= findRoot(subsets, subsets[i].parent);
return subsets[i].parent;
}
}

// Output will be like :
/*
2 -- 3 == 4
0 -- 3 == 5
0 -- 1 == 10
Minimum Cost Spanning Tree: 19
*/

0 comments on commit bdbccea

Please sign in to comment.