-
Notifications
You must be signed in to change notification settings - Fork 0
Databento
NautilusTrader provides an adapter for integrating with the Databento API and Databento Binary Encoding (DBN) format data. As Databento is purely a market data provider, there is no execution client provided - although a sandbox environment with simulated execution could still be set up. It's also possible to match Databento data with Interactive Brokers execution, or to calculate traditional asset class signals for crypto trading.
NautilusTrader 提供了一个适配器,用于与 Databento API 和 Databento 二进制编码 (DBN) 格式数据集成。由于 Databento 纯粹是一个市场数据提供商,因此不提供执行客户端 - 尽管仍然可以设置具有模拟执行的沙盒环境。还可以将 Databento 数据与 Interactive Brokers 执行相匹配,或者计算加密交易的传统资产类别信号。
The capabilities of this adapter include:
此适配器的功能包括:
- Loading historical data from DBN files and decoding into Nautilus objects for backtesting or writing to the data catalog. 从 DBN 文件加载历史数据并解码为 Nautilus 对象,用于回测或写入数据目录。
- Requesting historical data which is decoded to Nautilus objects to support live trading and backtesting. 请求解码为 Nautilus 对象的历史数据以支持实时交易和回测。
- Subscribing to real-time data feeds which are decoded to Nautilus objects to support live trading and sandbox environments. 订阅实时数据馈送,这些数据馈送被解码为 Nautilus 对象以支持实时交易和沙盒环境。
Databento currently offers 125 USD in free data credits (historical data only) for new account sign-ups.
Databento 目前为新注册账户提供 125 美元的免费数据积分(仅限历史数据)。
With careful requests, this is more than enough for testing and evaluation purposes. It's recommended you make use of the
/metadata.get_cost
endpoint.通过仔细的请求,这足以用于测试和评估目的。建议您使用
/metadata.get_cost
端点。
The adapter implementation takes the
databento-rs
crate as a dependency, which is the official Rust client library provided by Databento. There are actually no Databento Python dependencies.适配器实现将
databento-rs
crate 作为依赖项,这是 Databento 提供的官方 Rust 客户端库。实际上没有 Databento Python 依赖项。
There is no optional extra installation for databento, at this stage the core components of the adapter are compiled as static libraries and linked during the build by default.
目前不需要额外安装 databento,在此阶段,适配器的核心组件默认情况下编译为静态库并在构建期间链接。
The following adapter classes are available:
以下适配器类可用:
DatabentoDataLoader
: Loads Databento Binary Encoding (DBN) data from files.DatabentoDataLoader
:从文件加载 Databento 二进制编码 (DBN) 数据。DatabentoInstrumentProvider
: Integrates with the Databento API (HTTP) to provide latest or historical instrument definitions.DatabentoInstrumentProvider
:与 Databento API (HTTP) 集成以提供最新的或历史的Instrument定义。DatabentoHistoricalClient
: Integrates with the Databento API (HTTP) for historical market data requests.DatabentoHistoricalClient
:与 Databento API (HTTP) 集成以获取历史市场数据请求。DatabentoLiveClient
: Integrates with the Databento API (raw TCP) for subscribing to real-time data feeds.DatabentoLiveClient
:与 Databento API(原始 TCP)集成以订阅实时数据馈送。DatabentoDataClient
: Provides aLiveMarketDataClient
implementation for running a trading node in real time.DatabentoDataClient
:提供LiveMarketDataClient
实现以实时运行交易节点。
As with the other integration adapters, most users will simply define a configuration for a live trading node (covered below), and won't need to necessarily work with these lower level components directly.
与其他集成适配器一样,大多数用户只需为实时交易节点定义一个配置(如下所述),而无需直接使用这些较低级别的组件。
Databento provides extensive documentation for users which can be found in the Databento knowledge base. It's recommended you also refer to the Databento documentation in conjunction with this NautilusTrader integration guide.
Databento 为用户提供了大量的文档,可以在 Databento 知识库中找到。建议您还参考 Databento 文档以及此 NautilusTrader 集成指南。
Databento Binary Encoding (DBN) is an extremely fast message encoding and storage format for normalized market data. The DBN specification includes a simple, self-describing metadata header and a fixed set of struct definitions, which enforce a standardized way to normalize market data.
Databento 二进制编码 (DBN) 是一种极其快速的标准化市场数据消息编码和存储格式。DBN 规范包含一个简单的、自描述的元数据标头和一组固定的结构定义,这些定义强制执行标准化的市场数据规范化方式。
The integration provides a decoder which can convert DBN format data to Nautilus objects.
集成提供了一个解码器,可以将 DBN 格式的数据转换为 Nautilus 对象。
The same Rust implemented Nautilus decoder is used for:
相同的 Rust 实现的 Nautilus 解码器用于:
- Loading and decoding DBN files from disk. 从磁盘加载和解码 DBN 文件。
- Decoding historical and live data in real time. 实时解码历史和实时数据。
The following Databento schemas are supported by NautilusTrader:
NautilusTrader 支持以下 Databento 架构:
Databento schema | Nautilus data type |
---|---|
MBO | OrderBookDelta |
MBP_1 | (QuoteTick , Option<TradeTick> ) |
MBP_10 | OrderBookDepth10 |
TBBO | (QuoteTick , TradeTick ) |
TRADES | TradeTick |
OHLCV_1S | Bar |
OHLCV_1M | Bar |
OHLCV_1H | Bar |
OHLCV_1D | Bar |
DEFINITION |
Instrument (various types) |
IMBALANCE | DatabentoImbalance |
STATISTICS | DatabentoStatistics |
STATUS | InstrumentStatus |
Databento market data includes an
instrument_id
field which is an integer assigned by either the original source venue, or internally by Databento during normalization.Databento 市场数据包括一个
instrument_id
字段,它是由原始来源交易平台或 Databento 在规范化期间内部分配的整数。
It's important to realize that this is different to the Nautilus
InstrumentId
which is a string made up of a symbol + venue with a period separator i.e. "{symbol}.{venue}".重要的是要意识到这与 Nautilus
InstrumentId
不同,后者是由符号 + 交易平台组成的字符串,并使用句点分隔符,即“{symbol}.{venue}”。
The Nautilus decoder will use the Databento
raw_symbol
for the Nautilus symbol and an ISO 10383 MIC (Market Identifier Code) from the Databento instrument definition message for the Nautilus venue.Nautilus 解码器将使用 Databento
raw_symbol
作为 Nautilus 符号,并使用 Databento Instrument定义消息中的 ISO 10383 MIC(市场标识符代码)作为 Nautilus 交易平台。
Databento datasets are identified with a dataset code which is not the same as a venue identifier. You can read more about Databento dataset naming conventions here.
Databento 数据集使用与交易平台标识符不同的数据集代码进行标识。您可以在此处阅读有关 Databento 数据集命名约定的更多信息。
Of particular note is for CME Globex MDP 3.0 data (
GLBX.MDP3
dataset code), the following exchanges are all grouped under theGLBX
venue. These mappings can be determined from the instrumentsexchange
field:特别要注意的是 CME Globex MDP 3.0 数据(
GLBX.MDP3
数据集代码),以下交易所都归入GLBX
交易平台。这些映射可以从Instrument的exchange
字段确定:
CBCM
: XCME-XCBT inter-exchange spread.CBCM
:XCME-XCBT 交易所间价差。NYUM
: XNYM-DUMX inter-exchange spread.NYUM
:XNYM-DUMX 交易所间价差。XCBT
: Chicago Board of Trade (CBOT).XCBT
:芝加哥期货交易所 (CBOT)。XCEC
: Commodities Exchange Center (COMEX).XCEC
:纽约商品交易所 (COMEX)。XCME
: Chicago Mercantile Exchange (CME).XCME
:芝加哥商品交易所 (CME)。XFXS
: CME FX Link spread.XFXS
:CME 外汇链接价差。XNYM
: New York Mercantile Exchange (NYMEX).XNYM
:纽约商品交易所 (NYMEX)。
Other venue MICs can be found in the
venue
field of responses from themetadata.list_publishers
endpoint.其他交易平台 MIC 可以在
metadata.list_publishers
端点响应的venue
字段中找到。
Databento data includes various timestamp fields including (but not limited to):
Databento 数据包括各种时间戳字段,包括(但不限于):
ts_event
: The matching-engine-received timestamp expressed as the number of nanoseconds since the UNIX epoch.ts_event
:匹配引擎接收到的时间戳,表示为自 UNIX 纪元以来的纳秒数。ts_in_delta
: The matching-engine-sending timestamp expressed as the number of nanoseconds beforets_recv
.ts_in_delta
:匹配引擎发送时间戳,表示为ts_recv
之前的纳秒数。ts_recv
: The capture-server-received timestamp expressed as the number of nanoseconds since the UNIX epoch.ts_recv
:捕获服务器接收到的时间戳,表示为自 UNIX 纪元以来的纳秒数。ts_out
: The Databento sending timestamp.ts_out
:Databento 发送时间戳。
Nautilus data includes at least two timestamps (required by the
Data
contract):Nautilus 数据至少包含两个时间戳(
Data
契约要求):
ts_event
: UNIX timestamp (nanoseconds) when the data event occurred.ts_event
:数据事件发生时的 UNIX 时间戳(纳秒)。ts_init
: UNIX timestamp (nanoseconds) when the data object was initialized.ts_init
:数据对象初始化时的 UNIX 时间戳(纳秒)。
When decoding and normalizing Databento to Nautilus we generally assign the Databento
ts_recv
value to the Nautilusts_event
field, as this timestamp is much more reliable and consistent, and is guaranteed to be monotonically increasing per instrument. The exception to this are theDatabentoImbalance
andDatabentoStatistics
data types, which have fields for all timestamps将 Databento 解码和规范化为 Nautilus 时,我们通常将 Databento
ts_recv
值分配给 Nautilusts_event
字段,因为此时间戳更可靠、更一致,并且保证每个Instrument单调递增。例外情况是DatabentoImbalance
和DatabentoStatistics
数据类型,它们具有所有时间戳的字段
as the types are defined specifically for the adapter.
因为这些类型是专门为适配器定义的。
See the following Databento docs for further information:
有关更多信息,请参阅以下 Databento 文档:
- Databento standards and conventions - timestamps Databento 标准和约定 - 时间戳
- Databento timestamping guide Databento 时间戳指南
The following section discusses Databento schema -> Nautilus data type equivalence and considerations.
下一节将讨论 Databento 架构 -> Nautilus 数据类型的等效性和注意事项。
See the Databento list of fields by schema guide.
请参阅 Databento 按架构列出的字段指南。
Databento provides a single schema to cover all instrument classes, these are decoded to the appropriate Nautilus
Instrument
types.Databento 提供了一个架构来涵盖所有Instrument类别,这些架构被解码为相应的 Nautilus
Instrument
类型。
The following Databento instrument classes are supported by NautilusTrader:
NautilusTrader 支持以下 Databento Instrument类别:
Databento instrument class | Code | Nautilus instrument type |
---|---|---|
Stock | K | Equity |
Future | F | FuturesContract |
Call | C | OptionsContract |
Put | P | OptionsContract |
Future spread | S | FuturesSpread |
Option spread | T | OptionsSpread |
Mixed spread | M | OptionsSpread |
FX spot | X | CurrencyPair |
Bond | B | Not yet available |
This schema is the highest granularity data offered by Databento, and represents full order book depth. Some messages also provide trade information, and so when decoding MBO messages Nautilus will produce an
OrderBookDelta
and optionally aTradeTick
.此架构是 Databento 提供的最高粒度数据,表示完整的订单簿深度。某些消息还提供交易信息,因此在解码 MBO 消息时,Nautilus 将生成一个
OrderBookDelta
和一个可选的TradeTick
。
The Nautilus live data client will buffer MBO messages until an
F_LAST
flag is seen. A discreteOrderBookDeltas
container object will then be passed to the registered handler.Nautilus 实时数据客户端将缓冲 MBO 消息,直到看到
F_LAST
标志。然后,一个离散的OrderBookDeltas
容器对象将被传递给注册的处理程序。
Order book snapshots are also buffered into a discrete
OrderBookDeltas
container object, which occurs during the replay startup sequence.订单簿快照也被缓冲到一个离散的
OrderBookDeltas
容器对象中,这发生在回放启动序列期间。
This schema represents the top-of-book only (quotes and trades). Like with MBO messages, some messages carry trade information, and so when decoding MBP-1 messages Nautilus will produce a
QuoteTick
and also aTradeTick
if the message is a trade.此架构仅表示最佳报价(报价和交易)。与 MBO 消息一样,某些消息携带交易信息,因此在解码 MBP-1 消息时,如果消息是交易,Nautilus 将生成一个
QuoteTick
和一个TradeTick
。
The Databento bar aggregation messages are timestamped at the open of the bar interval. The Nautilus decoder will normalize the
ts_event
timestamps to the close of the bar (originalts_event
+ bar interval).Databento K线聚合消息的时间戳是K线间隔的开始时间。Nautilus 解码器会将
ts_event
时间戳规范化为K线的结束时间(原始ts_event
+ K线间隔)。
The Databento imbalance and statistics schemas cannot be represented as a built-in Nautilus data types, and so they have specific types defined in Rust
DatabentoImbalance
andDatabentoStatistics
. Python bindings are provided via pyo3 (Rust) so the types behave a little differently to a built-in Nautilus data types, where all attributes are pyo3 provided objects and not directly compatible with certain methods which may expect a Cython provided type. There are pyo3 -> legacy Cython object conversion methods available, which can be found in the API reference.Databento 不平衡和统计架构不能表示为内置的 Nautilus 数据类型,因此它们在 Rust
DatabentoImbalance
和DatabentoStatistics
中有特定的类型定义。Python 绑定是通过 pyo3 (Rust) 提供的,因此这些类型的行为与内置的 Nautilus 数据类型略有不同,其中所有属性都是 pyo3 提供的对象,并且与某些可能期望 Cython 提供的类型的方法不直接兼容。可以使用 pyo3 -> 旧 Cython 对象转换方法,这些方法可以在 API 参考中找到。
Here is a general pattern for converting a pyo3
Price
to a CythonPrice
:以下是将 pyo3
Price
转换为 CythonPrice
的一般模式:
price = Price.from_raw(pyo3_price.raw, pyo3_price.precision)
Additionally requesting for and subscribing to these data types requires the use of the lower level generic methods for custom data types. The following example subscribes to the imbalance schema for the
AAPL.XNAS
instrument (Apple Inc trading on the Nasdaq exchange):此外,请求和订阅这些数据类型需要使用用于自定义数据类型的较低级别通用方法。以下示例订阅
AAPL.XNAS
Instrument(Apple Inc 在 Nasdaq 交易所交易)的不平衡架构:
from nautilus_trader.adapters.databento import DATABENTO_CLIENT_ID
from nautilus_trader.adapters.databento import DatabentoImbalance
from nautilus_trader.model.data import DataType
instrument_id = InstrumentId.from_str("AAPL.XNAS")
self.subscribe_data(
data_type=DataType(DatabentoImbalance, metadata={"instrument_id": instrument_id}),
client_id=DATABENTO_CLIENT_ID,
)
Or requesting the previous days statistics schema for the
ES.FUT
parent symbol (all active E-mini S&P 500 futures contracts on the CME Globex exchange):或者请求
ES.FUT
父符号(CME Globex 交易所上所有活跃的 E-mini S&P 500 期货合约)前几天的统计信息架构:
from nautilus_trader.adapters.databento import DATABENTO_CLIENT_ID
from nautilus_trader.adapters.databento import DatabentoStatisics
from nautilus_trader.model.data import DataType
instrument_id = InstrumentId.from_str("ES.FUT.GLBX")
metadata = {
"instrument_id": instrument_id,
"start": "2024-03-06",
}
self.request_data(
data_type=DataType(DatabentoImbalance, metadata=metadata),
client_id=DATABENTO_CLIENT_ID,
)
When backtesting with Databento DBN data, there are two options:
使用 Databento DBN 数据进行回测时,有两个选项:
- Store the data in DBN (.dbn.zst) format files and decode to Nautilus objects on every run. 将数据存储在 DBN (.dbn.zst) 格式文件中,并在每次运行时解码为 Nautilus 对象。
- Convert the DBN files to Nautilus objects and then write to the data catalog once (stored as Nautilus Parquet format on disk). 将 DBN 文件转换为 Nautilus 对象,然后将其写入数据目录一次(以 Nautilus Parquet 格式存储在磁盘上)。
Whilst the DBN -> Nautilus decoder is implemented in Rust and has been optimized, the best performance for backtesting will be achieved by writing the Nautilus objects to the data catalog, which performs the decoding step once.
虽然 DBN -> Nautilus 解码器是用 Rust 实现的并且已经过优化,但通过将 Nautilus 对象写入数据目录可以实现回测的最佳性能,该目录执行一次解码步骤。
DataFusion provides a query engine backend to efficiently load and stream the Nautilus Parquet data from disk, which achieves extremely high through-put (at least an order of magnitude faster than converting DBN -> Nautilus on the fly for every backtest run).
DataFusion 提供了一个查询引擎后端,可以有效地从磁盘加载和流式传输 Nautilus Parquet 数据,这可以实现极高的吞吐量(至少比每次回测运行时动态转换 DBN -> Nautilus 快一个数量级)。
Performance benchmarks are currently under development.
性能基准测试目前正在开发中。
You can load DBN files and convert the records to Nautilus objects using the
DatabentoDataLoader
class. There are two main purposes for doing so:您可以使用
DatabentoDataLoader
类加载 DBN 文件并将记录转换为 Nautilus 对象。这样做的主要目的有两个:
- Pass the converted data to
BacktestEngine.add_data
directly for backtesting. 将转换后的数据直接传递给BacktestEngine.add_data
以进行回测。- Pass the converted data to
ParquetDataCatalog.write_data
for later streaming use with aBacktestNode
. 将转换后的数据传递给ParquetDataCatalog.write_data
,以便稍后与BacktestNode
一起用于流式传输。
This code snippet demonstrates how to load DBN data and pass to a
BacktestEngine
. Since theBacktestEngine
needs an instrument added, we'll use a test instrument provided by theTestInstrumentProvider
(you could also pass an instrument object which was parsed from a DBN file too). The data is a month of TSLA (Tesla Inc) trades on the Nasdaq exchange:此代码片段演示了如何加载 DBN 数据并将其传递给
BacktestEngine
。由于BacktestEngine
需要添加Instrument,因此我们将使用TestInstrumentProvider
提供的测试Instrument(您也可以传递从 DBN 文件解析的Instrument对象)。数据是 Nasdaq 交易所一个月的 TSLA(特斯拉公司)交易:
# Add instrument
# 添加Instrument
TSLA_NASDAQ = TestInstrumentProvider.equity(symbol="TSLA")
engine.add_instrument(TSLA_NASDAQ)
# Decode data to legacy Cython objects
# 将数据解码为旧的 Cython 对象
loader = DatabentoDataLoader()
trades = loader.from_dbn_file(
path=TEST_DATA_DIR / "databento" / "temp" / "tsla-xnas-20240107-20240206.trades.dbn.zst",
instrument_id=TSLA_NASDAQ.id,
)
# Add data
# 添加数据
engine.add_data(trades)
This code snippet demonstrates how to load DBN data and write to a
ParquetDataCatalog
. We pass a value offalse
for theas_legacy_cython
flag, which will ensure the DBN records are decoded as pyo3 (Rust) objects. It's worth noting that legacy Cython objects can also be passed towrite_data
, but these need to be converted back to pyo3 objects under the hood (so passing pyo3 objects is an optimization).此代码片段演示了如何加载 DBN 数据并将其写入
ParquetDataCatalog
。我们为as_legacy_cython
标志传递一个false
值,这将确保 DBN 记录被解码为 pyo3 (Rust) 对象。值得注意的是,旧的 Cython 对象也可以传递给write_data
,但这些对象需要在后台转换回 pyo3 对象(因此传递 pyo3 对象是一种优化)。
# Initialize the catalog interface
# (will use the `NAUTILUS_PATH` env var as the path)
# 初始化目录接口
# (将使用 `NAUTILUS_PATH` 环境变量作为路径)
catalog = ParquetDataCatalog.from_env()
instrument_id = InstrumentId.from_str("TSLA.XNAS")
# Decode data to pyo3 objects
# 将数据解码为 pyo3 对象
loader = DatabentoDataLoader()
trades = loader.from_dbn_file(
path=TEST_DATA_DIR / "databento" / "temp" / "tsla-xnas-20240107-20240206.trades.dbn.zst",
instrument_id=instrument_id,
as_legacy_cython=False, # This is an optimization for writing to the catalog 这是写入目录的优化
)
# Write data
# 写入数据
catalog.write_data(trades)
See also the Data concepts guide.
另请参阅 数据概念指南。
The
DatabentoDataClient
is a Python class which contains other Databento adapter classes. There are twoDatabentoLiveClients
per Databento dataset:
DatabentoDataClient
是一个 Python 类,其中包含其他 Databento 适配器类。每个 Databento 数据集有两个DatabentoLiveClients
:
- One for MBO (order book deltas) real-time feeds. 一个用于 MBO(订单簿增量)实时馈送。
- One for all other real-time feeds. 一个用于所有其他实时馈送。
There is currently a limitation that all MBO (order book deltas) subscriptions for a dataset have to be made at node startup, to then be able to replay data from the beginning of the session. If subsequent subscriptions arrive after start, then an error will be logged (and the subscription ignored).
目前存在一个限制,即必须在节点启动时进行数据集的所有 MBO(订单簿增量)订阅,然后才能从会话开始时重放数据。如果后续订阅在启动后到达,则会记录错误(并且忽略订阅)。
There is no such limitation for any of the other Databento schemas.
其他任何 Databento 架构都没有此类限制。
A single
DatabentoHistoricalClient
instance is reused between theDatabentoInstrumentProvider
andDatabentoDataClient
, which makes historical instrument definitions and data requests.单个
DatabentoHistoricalClient
实例在DatabentoInstrumentProvider
和DatabentoDataClient
之间重复使用,这使得历史Instrument定义和数据请求成为可能。
The most common use case is to configure a live
TradingNode
to include a Databento data client. To achieve this, add aDATABENTO
section to your client configuration(s):最常见的用例是配置实时
TradingNode
以包含 Databento 数据客户端。为此,请将DATABENTO
部分添加到您的客户端配置中:
from nautilus_trader.adapters.databento import DATABENTO
from nautilus_trader.live.node import TradingNode
config = TradingNodeConfig(
..., # Omitted
data_clients={
DATABENTO: {
"api_key": None, # 'DATABENTO_API_KEY' env var
"http_gateway": None, # Override for the default HTTP historical gateway
"live_gateway": None, # Override for the default raw TCP real-time gateway
"instrument_provider": InstrumentProviderConfig(load_all=True),
"instrument_ids": None, # Nautilus instrument IDs to load on start
"parent_symbols": None, # Databento parent symbols to load on start
},
},
..., # Omitted
)
Then, create a
TradingNode
and add the client factory:然后,创建一个
TradingNode
并添加客户端工厂:
from nautilus_trader.adapters.databento.factories import DatabentoLiveDataClientFactory
from nautilus_trader.live.node import TradingNode
# Instantiate the live trading node with a configuration
# 使用配置实例化实时交易节点
node = TradingNode(config=config)
# Register the client factory with the node
# 向节点注册客户端工厂
node.add_data_client_factory(DATABENTO, DatabentoLiveDataClientFactory)
# Finally build the node
# 最后构建节点
node.build()
api_key
: The Databento API secret key. IfNone
then will source theDATABENTO_API_KEY
environment variable.api_key
:Databento API 密钥。如果为None
,则将获取DATABENTO_API_KEY
环境变量。http_gateway
: The historical HTTP client gateway override (useful for testing and typically not needed by most users).http_gateway
:历史 HTTP 客户端网关覆盖(对测试有用,大多数用户通常不需要)。live_gateway
: The raw TCP real-time client gateway override (useful for testing and typically not needed by most users).live_gateway
:原始 TCP 实时客户端网关覆盖(对测试有用,大多数用户通常不需要)。parent_symbols
: The Databento parent symbols to subscribe to instrument definitions for on start. This is a map of Databento dataset keys -> to a sequence of the parent symbols, e.g.{'GLBX.MDP3', ['ES.FUT', 'ES.OPT']}
(for all E-mini S&P 500 futures and options products).parent_symbols
:启动时订阅Instrument定义的 Databento 父符号。这是 Databento 数据集键到父符号序列的映射,例如{'GLBX.MDP3', ['ES.FUT', 'ES.OPT']}
(适用于所有 E-mini S&P 500 期货和期权产品)。instrument_ids
: The instrument IDs to request instrument definitions for on start.instrument_ids
:启动时请求Instrument定义的Instrument ID。timeout_initial_load
: The timeout (seconds) to wait for instruments to load (concurrently per dataset).timeout_initial_load
:等待Instrument加载的超时时间(以秒为单位)(每个数据集并发)。mbo_subscriptions_delay
: The timeout (seconds) to wait for MBO/L3 subscriptions (concurrently per dataset). After the timeout the MBO order book feed will start and replay messages from the start of the week which encompasses the initial snapshot and then all deltas.mbo_subscriptions_delay
:等待 MBO/L3 订阅的超时时间(以秒为单位)(每个数据集并发)。超时后,MBO 订单簿馈送将启动并从包含初始快照和所有增量的星期一开始重放消息。