Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

revert: Optimise metadata discovery for large databases #536

Merged
merged 1 commit into from
Nov 7, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
137 changes: 0 additions & 137 deletions tap_postgres/client.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,8 +20,6 @@
import sqlalchemy.types
from psycopg2 import extras
from singer_sdk import SQLConnector, SQLStream
from singer_sdk import typing as th
from singer_sdk._singerlib import CatalogEntry, MetadataMapping, Schema
from singer_sdk.connectors.sql import SQLToJSONSchema
from singer_sdk.helpers._state import increment_state
from singer_sdk.helpers._typing import TypeConformanceLevel
Expand All @@ -34,12 +32,6 @@
from singer_sdk.helpers.types import Context
from sqlalchemy.dialects import postgresql
from sqlalchemy.engine import Engine
from sqlalchemy.engine.interfaces import ( # type: ignore[attr-defined]
ReflectedColumn,
ReflectedIndex,
ReflectedPrimaryKeyConstraint,
TableKey,
)
from sqlalchemy.engine.reflection import Inspector


Expand Down Expand Up @@ -191,135 +183,6 @@ def get_schema_names(self, engine: Engine, inspected: Inspector) -> list[str]:
return self.config["filter_schemas"]
return super().get_schema_names(engine, inspected)

# Uses information_schema for speed.
def discover_catalog_entry_optimized( # noqa: PLR0913
self,
engine: Engine,
inspected: Inspector,
schema_name: str,
table_name: str,
is_view: bool,
table_data: dict[TableKey, list[ReflectedColumn]],
pk_data: dict[TableKey, ReflectedPrimaryKeyConstraint],
index_data: dict[TableKey, list[ReflectedIndex]],
) -> CatalogEntry:
"""Create `CatalogEntry` object for the given table or a view.

Args:
engine: SQLAlchemy engine
inspected: SQLAlchemy inspector instance for engine
schema_name: Schema name to inspect
table_name: Name of the table or a view
is_view: Flag whether this object is a view, returned by `get_object_names`
table_data: Cached inspector data for the relevant tables
pk_data: Cached inspector data for the relevant primary keys
index_data: Cached inspector data for the relevant indexes

Returns:
`CatalogEntry` object for the given table or a view
"""
# Initialize unique stream name
unique_stream_id = f"{schema_name}-{table_name}"
table_key = (schema_name, table_name)

# Detect key properties
possible_primary_keys: list[list[str]] = []
pk_def = pk_data.get(table_key, {})
if pk_def and "constrained_columns" in pk_def:
possible_primary_keys.append(pk_def["constrained_columns"])

# An element of the columns list is ``None`` if it's an expression and is
# returned in the ``expressions`` list of the reflected index.
possible_primary_keys.extend(
index_def["column_names"]
for index_def in index_data.get(table_key, [])
if index_def.get("unique", False)
)

key_properties = next(iter(possible_primary_keys), None)

# Initialize columns list
table_schema = th.PropertiesList()
for column_def in table_data.get(table_key, []):
column_name = column_def["name"]
is_nullable = column_def.get("nullable", False)
jsonschema_type: dict = self.to_jsonschema_type(column_def["type"])
table_schema.append(
th.Property(
name=column_name,
wrapped=th.CustomType(jsonschema_type),
nullable=is_nullable,
required=column_name in key_properties if key_properties else False,
),
)
schema = table_schema.to_dict()

# Initialize available replication methods
addl_replication_methods: list[str] = [""] # By default an empty list.
# Notes regarding replication methods:
# - 'INCREMENTAL' replication must be enabled by the user by specifying
# a replication_key value.
# - 'LOG_BASED' replication must be enabled by the developer, according
# to source-specific implementation capabilities.
replication_method = next(reversed(["FULL_TABLE", *addl_replication_methods]))

# Create the catalog entry object
return CatalogEntry(
tap_stream_id=unique_stream_id,
stream=unique_stream_id,
table=table_name,
key_properties=key_properties,
schema=Schema.from_dict(schema),
is_view=is_view,
replication_method=replication_method,
metadata=MetadataMapping.get_standard_metadata(
schema_name=schema_name,
schema=schema,
replication_method=replication_method,
key_properties=key_properties,
valid_replication_keys=None, # Must be defined by user
),
database=None, # Expects single-database context
row_count=None,
stream_alias=None,
replication_key=None, # Must be defined by user
)

def discover_catalog_entries(self) -> list[dict]:
"""Return a list of catalog entries from discovery.

Returns:
The discovered catalog entries as a list.
"""
result: list[dict] = []
engine = self._engine
inspected = sa.inspect(engine)
for schema_name in self.get_schema_names(engine, inspected):
# Use get_multi_* data here instead of pulling per-table
table_data = inspected.get_multi_columns(schema=schema_name)
pk_data = inspected.get_multi_pk_constraint(schema=schema_name)
index_data = inspected.get_multi_indexes(schema=schema_name)

# Iterate through each table and view
for table_name, is_view in self.get_object_names(
engine,
inspected,
schema_name,
):
catalog_entry = self.discover_catalog_entry_optimized(
engine,
inspected,
schema_name,
table_name,
is_view,
table_data,
pk_data,
index_data,
)
result.append(catalog_entry.to_dict())

return result


class PostgresStream(SQLStream):
"""Stream class for Postgres streams."""
Expand Down