Skip to content

MichaelArbel/Scaled-MMD-GAN

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Scaled MMD GANs

Official Tensorflow implementation for reproducing results of On gradient regularizers for MMD GANs.

Setup

Install:

pip install -r requirements.txt

The GPU compatible version of tensorflow is required for this code to work.

Download CelebA dataset:

cd scripts
OUTPUT_DATA_DIR=/path/to/output/directory/
python scripts/download.py celebA -- $OUTPUT_DATA_DIR

Download ImageNet dataset:

Please download ILSVRC2012 dataset from http://image-net.org/download-images

Preprocess ImageNet dataset:

IMAGENET_TRAIN_DIR=/path/to/imagenet/train/ 
PREPROCESSED_DATA_DIR=/path/to/save_dir/
TFRECORDS_DATA_DIR=/path/to/output/tfrecords 
bash preprocess.sh $IMAGENET_TRAIN_DIR $PREPROCESSED_DATA_DIR
build_imagenet_data --train_directory=$PREPROCESSED_DATA_DIR --output_directory=$TFRECORDS_DATA_DIR

Download inception model:

python source/inception/download.py --outfile=datasets/inception_model

Training

Unsupervised image generation of 64x64 ImageNet:

DATADIR=/path/to/datadir/
OUTDIR=/path/to/outputdir/
CONFIG=configs/imagenet_smmd.yml
# multi-GPU: 3 GPUs
CUDA_VISIBLE_DEVICES=0,1,2 python gan/main.py -dataset imagenet -data_dir $DATADIR -name  -config_file $CONFIG -out_dir $OUTDIR -multi_gpu true

For any question, please feel free to contact Michael Arbel ([email protected])

References

Michael Arbel, Dougal J. Sutherland, Mikołaj Bińkowski, Arthur Gretton. On gradient regularizers for MMD GANs. arXiv

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.8%
  • Shell 0.2%