Skip to content

Commit

Permalink
Reranker option for RAG (#2929)
Browse files Browse the repository at this point in the history
* Reranker WIP

* add cacheing and singleton loading

* Add field to workspaces for vectorSearchMode
Add UI for lancedb to change mode
update all search endpoints to pass in reranker prop if provider can use it

* update hint text

* When reranking, swap score to rerank score

* update optchain
  • Loading branch information
timothycarambat authored Jan 2, 2025
1 parent bb5c3b7 commit ad01df8
Show file tree
Hide file tree
Showing 16 changed files with 339 additions and 9 deletions.
Original file line number Diff line number Diff line change
@@ -0,0 +1,51 @@
import { useState } from "react";

// We dont support all vectorDBs yet for reranking due to complexities of how each provider
// returns information. We need to normalize the response data so Reranker can be used for each provider.
const supportedVectorDBs = ["lancedb"];
const hint = {
default: {
title: "Default",
description:
"This is the fastest performance, but may not return the most relevant results leading to model hallucinations.",
},
rerank: {
title: "Accuracy Optimized",
description:
"LLM responses may take longer to generate, but your responses will be more accurate and relevant.",
},
};

export default function VectorSearchMode({ workspace, setHasChanges }) {
const [selection, setSelection] = useState(
workspace?.vectorSearchMode ?? "default"
);
if (!workspace?.vectorDB || !supportedVectorDBs.includes(workspace?.vectorDB))
return null;

return (
<div>
<div className="flex flex-col">
<label htmlFor="name" className="block input-label">
Search Preference
</label>
</div>
<select
name="vectorSearchMode"
value={selection}
className="border-none bg-theme-settings-input-bg text-white text-sm mt-2 rounded-lg focus:outline-primary-button active:outline-primary-button outline-none block w-full p-2.5"
onChange={(e) => {
setSelection(e.target.value);
setHasChanges(true);
}}
required={true}
>
<option value="default">Default</option>
<option value="rerank">Accuracy Optimized</option>
</select>
<p className="text-white text-opacity-60 text-xs font-medium py-1.5">
{hint[selection]?.description}
</p>
</div>
);
}
2 changes: 2 additions & 0 deletions frontend/src/pages/WorkspaceSettings/VectorDatabase/index.jsx
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@ import MaxContextSnippets from "./MaxContextSnippets";
import DocumentSimilarityThreshold from "./DocumentSimilarityThreshold";
import ResetDatabase from "./ResetDatabase";
import VectorCount from "./VectorCount";
import VectorSearchMode from "./VectorSearchMode";

export default function VectorDatabase({ workspace }) {
const [hasChanges, setHasChanges] = useState(false);
Expand Down Expand Up @@ -43,6 +44,7 @@ export default function VectorDatabase({ workspace }) {
<VectorDBIdentifier workspace={workspace} />
<VectorCount reload={true} workspace={workspace} />
</div>
<VectorSearchMode workspace={workspace} setHasChanges={setHasChanges} />
<MaxContextSnippets workspace={workspace} setHasChanges={setHasChanges} />
<DocumentSimilarityThreshold
workspace={workspace}
Expand Down
3 changes: 3 additions & 0 deletions frontend/src/pages/WorkspaceSettings/index.jsx
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,7 @@ import Members from "./Members";
import WorkspaceAgentConfiguration from "./AgentConfig";
import useUser from "@/hooks/useUser";
import { useTranslation } from "react-i18next";
import System from "@/models/system";

const TABS = {
"general-appearance": GeneralAppearance,
Expand Down Expand Up @@ -59,9 +60,11 @@ function ShowWorkspaceChat() {
return;
}

const _settings = await System.keys();
const suggestedMessages = await Workspace.getSuggestedMessages(slug);
setWorkspace({
..._workspace,
vectorDB: _settings?.VectorDB,
suggestedMessages,
});
setLoading(false);
Expand Down
1 change: 1 addition & 0 deletions server/endpoints/api/workspace/index.js
Original file line number Diff line number Diff line change
Expand Up @@ -961,6 +961,7 @@ function apiWorkspaceEndpoints(app) {
LLMConnector: getLLMProvider(),
similarityThreshold: parseSimilarityThreshold(),
topN: parseTopN(),
rerank: workspace?.vectorSearchMode === "rerank",
});

response.status(200).json({
Expand Down
10 changes: 10 additions & 0 deletions server/models/workspace.js
Original file line number Diff line number Diff line change
Expand Up @@ -34,6 +34,7 @@ const Workspace = {
"agentProvider",
"agentModel",
"queryRefusalResponse",
"vectorSearchMode",
],

validations: {
Expand Down Expand Up @@ -99,6 +100,15 @@ const Workspace = {
if (!value || typeof value !== "string") return null;
return String(value);
},
vectorSearchMode: (value) => {
if (
!value ||
typeof value !== "string" ||
!["default", "rerank"].includes(value)
)
return "default";
return value;
},
},

/**
Expand Down
2 changes: 2 additions & 0 deletions server/prisma/migrations/20250102204948_init/migration.sql
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
-- AlterTable
ALTER TABLE "workspaces" ADD COLUMN "vectorSearchMode" TEXT DEFAULT 'default';
1 change: 1 addition & 0 deletions server/prisma/schema.prisma
Original file line number Diff line number Diff line change
Expand Up @@ -137,6 +137,7 @@ model workspaces {
agentProvider String?
agentModel String?
queryRefusalResponse String?
vectorSearchMode String? @default("default")
workspace_users workspace_users[]
documents workspace_documents[]
workspace_suggested_messages workspace_suggested_messages[]
Expand Down
3 changes: 2 additions & 1 deletion server/storage/models/.gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -3,4 +3,5 @@ downloaded/*
!downloaded/.placeholder
openrouter
apipie
novita
novita
mixedbread-ai*
153 changes: 153 additions & 0 deletions server/utils/EmbeddingRerankers/native/index.js
Original file line number Diff line number Diff line change
@@ -0,0 +1,153 @@
const path = require("path");
const fs = require("fs");

class NativeEmbeddingReranker {
static #model = null;
static #tokenizer = null;
static #transformers = null;

constructor() {
// An alternative model to the mixedbread-ai/mxbai-rerank-xsmall-v1 model (speed on CPU is much slower for this model @ 18docs = 6s)
// Model Card: https://huggingface.co/Xenova/ms-marco-MiniLM-L-6-v2 (speed on CPU is much faster @ 18docs = 1.6s)
this.model = "Xenova/ms-marco-MiniLM-L-6-v2";
this.cacheDir = path.resolve(
process.env.STORAGE_DIR
? path.resolve(process.env.STORAGE_DIR, `models`)
: path.resolve(__dirname, `../../../storage/models`)
);
this.modelPath = path.resolve(this.cacheDir, ...this.model.split("/"));
// Make directory when it does not exist in existing installations
if (!fs.existsSync(this.cacheDir)) fs.mkdirSync(this.cacheDir);
this.log("Initialized");
}

log(text, ...args) {
console.log(`\x1b[36m[NativeEmbeddingReranker]\x1b[0m ${text}`, ...args);
}

/**
* This function will preload the reranker suite and tokenizer.
* This is useful for reducing the latency of the first rerank call and pre-downloading the models and such
* to avoid having to wait for the models to download on the first rerank call.
*/
async preload() {
try {
this.log(`Preloading reranker suite...`);
await this.initClient();
this.log(
`Preloaded reranker suite. Reranking is available as a service now.`
);
return;
} catch (e) {
console.error(e);
this.log(
`Failed to preload reranker suite. Reranking will be available on the first rerank call.`
);
return;
}
}

async initClient() {
if (NativeEmbeddingReranker.#transformers) {
this.log(`Reranker suite already initialized - reusing.`);
return;
}

await import("@xenova/transformers").then(
async ({ AutoModelForSequenceClassification, AutoTokenizer }) => {
this.log(`Loading reranker suite...`);
NativeEmbeddingReranker.#transformers = {
AutoModelForSequenceClassification,
AutoTokenizer,
};
await this.#getPreTrainedModel();
await this.#getPreTrainedTokenizer();
}
);
return;
}

async #getPreTrainedModel() {
if (NativeEmbeddingReranker.#model) {
this.log(`Loading model from singleton...`);
return NativeEmbeddingReranker.#model;
}

const model =
await NativeEmbeddingReranker.#transformers.AutoModelForSequenceClassification.from_pretrained(
this.model,
{
progress_callback: (p) =>
p.status === "progress" &&
this.log(`Loading model ${this.model}... ${p?.progress}%`),
cache_dir: this.cacheDir,
}
);
this.log(`Loaded model ${this.model}`);
NativeEmbeddingReranker.#model = model;
return model;
}

async #getPreTrainedTokenizer() {
if (NativeEmbeddingReranker.#tokenizer) {
this.log(`Loading tokenizer from singleton...`);
return NativeEmbeddingReranker.#tokenizer;
}

const tokenizer =
await NativeEmbeddingReranker.#transformers.AutoTokenizer.from_pretrained(
this.model,
{
progress_callback: (p) =>
p.status === "progress" &&
this.log(`Loading tokenizer ${this.model}... ${p?.progress}%`),
cache_dir: this.cacheDir,
}
);
this.log(`Loaded tokenizer ${this.model}`);
NativeEmbeddingReranker.#tokenizer = tokenizer;
return tokenizer;
}

/**
* Reranks a list of documents based on the query.
* @param {string} query - The query to rerank the documents against.
* @param {{text: string}[]} documents - The list of document text snippets to rerank. Should be output from a vector search.
* @param {Object} options - The options for the reranking.
* @param {number} options.topK - The number of top documents to return.
* @returns {Promise<any[]>} - The reranked list of documents.
*/
async rerank(query, documents, options = { topK: 4 }) {
await this.initClient();
const model = NativeEmbeddingReranker.#model;
const tokenizer = NativeEmbeddingReranker.#tokenizer;

const start = Date.now();
this.log(`Reranking ${documents.length} documents...`);
const inputs = tokenizer(new Array(documents.length).fill(query), {
text_pair: documents.map((doc) => doc.text),
padding: true,
truncation: true,
});
const { logits } = await model(inputs);
const reranked = logits
.sigmoid()
.tolist()
.map(([score], i) => ({
rerank_corpus_id: i,
rerank_score: score,
...documents[i],
}))
.sort((a, b) => b.rerank_score - a.rerank_score)
.slice(0, options.topK);

this.log(
`Reranking ${documents.length} documents to top ${options.topK} took ${Date.now() - start}ms`
);
return reranked;
}
}

module.exports = {
NativeEmbeddingReranker,
};
1 change: 1 addition & 0 deletions server/utils/agents/aibitat/plugins/memory.js
Original file line number Diff line number Diff line change
Expand Up @@ -95,6 +95,7 @@ const memory = {
input: query,
LLMConnector,
topN: workspace?.topN ?? 4,
rerank: workspace?.vectorSearchMode === "rerank",
});

if (contextTexts.length === 0) {
Expand Down
2 changes: 2 additions & 0 deletions server/utils/chats/apiChatHandler.js
Original file line number Diff line number Diff line change
Expand Up @@ -180,6 +180,7 @@ async function chatSync({
similarityThreshold: workspace?.similarityThreshold,
topN: workspace?.topN,
filterIdentifiers: pinnedDocIdentifiers,
rerank: workspace?.vectorSearchMode === "rerank",
})
: {
contextTexts: [],
Expand Down Expand Up @@ -480,6 +481,7 @@ async function streamChat({
similarityThreshold: workspace?.similarityThreshold,
topN: workspace?.topN,
filterIdentifiers: pinnedDocIdentifiers,
rerank: workspace?.vectorSearchMode === "rerank",
})
: {
contextTexts: [],
Expand Down
1 change: 1 addition & 0 deletions server/utils/chats/embed.js
Original file line number Diff line number Diff line change
Expand Up @@ -93,6 +93,7 @@ async function streamChatWithForEmbed(
similarityThreshold: embed.workspace?.similarityThreshold,
topN: embed.workspace?.topN,
filterIdentifiers: pinnedDocIdentifiers,
rerank: embed.workspace?.vectorSearchMode === "rerank",
})
: {
contextTexts: [],
Expand Down
2 changes: 2 additions & 0 deletions server/utils/chats/openaiCompatible.js
Original file line number Diff line number Diff line change
Expand Up @@ -89,6 +89,7 @@ async function chatSync({
similarityThreshold: workspace?.similarityThreshold,
topN: workspace?.topN,
filterIdentifiers: pinnedDocIdentifiers,
rerank: workspace?.vectorSearchMode === "rerank",
})
: {
contextTexts: [],
Expand Down Expand Up @@ -304,6 +305,7 @@ async function streamChat({
similarityThreshold: workspace?.similarityThreshold,
topN: workspace?.topN,
filterIdentifiers: pinnedDocIdentifiers,
rerank: workspace?.vectorSearchMode === "rerank",
})
: {
contextTexts: [],
Expand Down
1 change: 1 addition & 0 deletions server/utils/chats/stream.js
Original file line number Diff line number Diff line change
Expand Up @@ -139,6 +139,7 @@ async function streamChatWithWorkspace(
similarityThreshold: workspace?.similarityThreshold,
topN: workspace?.topN,
filterIdentifiers: pinnedDocIdentifiers,
rerank: workspace?.vectorSearchMode === "rerank",
})
: {
contextTexts: [],
Expand Down
1 change: 1 addition & 0 deletions server/utils/helpers/index.js
Original file line number Diff line number Diff line change
Expand Up @@ -56,6 +56,7 @@
* @property {Function} totalVectors - Returns the total number of vectors in the database.
* @property {Function} namespaceCount - Returns the count of vectors in a given namespace.
* @property {Function} similarityResponse - Performs a similarity search on a given namespace.
* @property {Function} rerankedSimilarityResponse - Performs a similarity search on a given namespace with reranking (if supported by provider).
* @property {Function} namespace - Retrieves the specified namespace collection.
* @property {Function} hasNamespace - Checks if a namespace exists.
* @property {Function} namespaceExists - Verifies if a namespace exists in the client.
Expand Down
Loading

0 comments on commit ad01df8

Please sign in to comment.