-
Notifications
You must be signed in to change notification settings - Fork 345
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
0 parents
commit 935dc6e
Showing
60 changed files
with
11,911 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,25 @@ | ||
Copyright (c) 2017, NVIDIA CORPORATION. All rights reserved. | ||
|
||
Redistribution and use in source and binary forms, with or without | ||
modification, are permitted provided that the following conditions | ||
are met: | ||
* Redistributions of source code must retain the above copyright | ||
notice, this list of conditions and the following disclaimer. | ||
* Redistributions in binary form must reproduce the above copyright | ||
notice, this list of conditions and the following disclaimer in the | ||
documentation and/or other materials provided with the distribution. | ||
* Neither the name of NVIDIA CORPORATION nor the names of its | ||
contributors may be used to endorse or promote products derived | ||
from this software without specific prior written permission. | ||
|
||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY | ||
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR | ||
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, | ||
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, | ||
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR | ||
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY | ||
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | ||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | ||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,12 @@ | ||
# NVIDIA Redtail project | ||
|
||
Autonomous drone navigation using deep learning. Refer to [wiki](https://github.com/Alexey-Kamenev/redtail/wiki) for more information on how to get started. | ||
|
||
# News | ||
* **2017-09-07**: NVIDIA Redtail project is released as an open source project. | ||
|
||
Source code, pre-trained models as well as detailed build and test instructions are released on GitHub. | ||
|
||
* **2017-07-26**: migrated code and scripts to [JetPack 3.1](https://developer.nvidia.com/embedded/jetpack) with [TensorRT 2.1](https://developer.nvidia.com/tensorrt). | ||
|
||
TensorRT 2.1 provides significant improvements in DNN inference performance as well as new features and bug fixes. This is a breaking change which requires re-flashing Jetson with JetPack 3.1. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,185 @@ | ||
# Copyright (c) 2017, NVIDIA CORPORATION. All rights reserved. | ||
# Full license terms provided in LICENSE.md file. | ||
|
||
import argparse | ||
import os | ||
import random | ||
import sys | ||
|
||
train_datasets = ['001', '002', '004', '005', '006', '007', '009'] | ||
#train_datasets = ['001', '002'] # For testing | ||
|
||
val_datasets = ['003', '008', '010'] | ||
#val_datasets = ['010'] # For testing | ||
|
||
test_datasets = ['012'] | ||
|
||
labels = {val: idx for (idx, val) in enumerate(['lc', 'sc', 'rc'])} | ||
|
||
#root_dir = '/data/redtail/datasets/TrailDatasetIDSIA_GOLD/' | ||
|
||
def enumerate_images(path, remove_prefix=''): | ||
""" | ||
Enumerates images recursively given the path. | ||
""" | ||
for root, subdirs, files in os.walk(path): | ||
for file in files: | ||
if file.endswith('.jpg'): | ||
prefix = root[len(remove_prefix):] | ||
yield os.path.join(prefix, file) | ||
|
||
def list_dir(root_dir, dir_path, label): | ||
""" | ||
Returns sorted list of files for a particular label. | ||
Sort files numerically rather than lexicographically to enable | ||
partitioning later. Assuming that source files are named more or less | ||
in order of frames from the trail. | ||
""" | ||
path = os.path.join(dir_path, os.path.join('videos', label)) | ||
return sorted(list(enumerate_images(path, root_dir)), | ||
key=lambda f: int(os.path.splitext(os.path.basename(f))[0].replace('frame', ''))) | ||
|
||
def sample_balance_dir(root_dir, path, sample_interval=1): | ||
""" | ||
Returns a balanced, undersampled list of files from a directory specified by path. | ||
""" | ||
res = {} | ||
# Get files for each label. | ||
for l in labels.iterkeys(): | ||
res[l] = list_dir(root_dir, path, l) | ||
# Balance class entries for the current dir | ||
# REVIEW alexeyk: this cuts off head/tail of larger sets, is this right? | ||
min_size = min([len(res[l]) for l in res]) | ||
for l in labels.iterkeys(): | ||
cur_size = len(res[l]) | ||
if cur_size > min_size or sample_interval > 1: | ||
start = (cur_size - min_size) / 2 | ||
res[l] = res[l][start:(start + min_size):sample_interval] | ||
return res | ||
|
||
def sample_dir(root_dir, path, sample_interval=1): | ||
""" | ||
Returns a sampled list of files from a directory specified by path. | ||
""" | ||
res = {} | ||
# Get files for each label. | ||
for l in labels.iterkeys(): | ||
res[l] = list_dir(root_dir, path, l) | ||
if sample_interval > 1: | ||
for l in labels.iterkeys(): | ||
res[l] = res[l][::sample_interval] | ||
return res | ||
|
||
def write_map_file_with_undersampling(map_path, root_dir, directories, max_num_items=10000, sample_interval=1): | ||
""" | ||
Creates map file out of files in directories with balancing and undersampling. | ||
""" | ||
dir_files = {} | ||
# Get clean list of files from all directories. | ||
for d in directories: | ||
dir_path = os.path.join(root_dir, d) | ||
print 'Processing ' + dir_path | ||
dir_files[d] = sample_balance_dir(root_dir, dir_path, sample_interval) | ||
# Balance directories. Each directory has equal number of files for each | ||
# label so just take count from first label. | ||
min_size = min([len(v[labels.keys()[0]]) for v in dir_files.itervalues()]) | ||
max_per_dir_per_class = min(max_num_items / (len(dir_files) * len(labels)), min_size) | ||
print('Using {} iterms per directory per class.'.format(max_per_dir_per_class)) | ||
|
||
with open(map_path, 'w') as f: | ||
for dir in dir_files.itervalues(): | ||
for lab_dir in dir.iteritems(): | ||
for path in lab_dir[1][:max_per_dir_per_class]: | ||
f.write('{} {}\n'.format(path, labels[lab_dir[0]])) | ||
|
||
def write_map_file_with_oversampling(map_path, root_dir, directories, max_num_items=100000, sample_interval=1): | ||
""" | ||
Creates map file out of files in directories with balancing and oversampling. | ||
""" | ||
dir_files = {} | ||
# Get clean list of files from all directories. | ||
for d in directories: | ||
dir_path = os.path.join(root_dir, d) | ||
print 'Processing ' + dir_path | ||
dir_files[d] = sample_dir(root_dir, dir_path, sample_interval) | ||
# Balance directories. | ||
# Find the largest directory size. | ||
max_size = max([len(d) for parent_dir in dir_files.itervalues() for d in parent_dir.itervalues()]) | ||
max_per_dir_per_class = min(max_num_items / (len(dir_files) * len(labels)), max_size) | ||
print('Using {} iterms per directory per class.'.format(max_per_dir_per_class)) | ||
|
||
with open(map_path, 'w') as f: | ||
for dir in dir_files.itervalues(): | ||
for lab_dir in dir.iteritems(): | ||
cur_size = len(lab_dir[1]) | ||
if cur_size >= max_per_dir_per_class: | ||
for path in lab_dir[1][:max_per_dir_per_class]: | ||
f.write('{} {}\n'.format(path, labels[lab_dir[0]])) | ||
else: | ||
numIter = (max_per_dir_per_class + cur_size - 1) / cur_size | ||
i = 0 | ||
while i < max_per_dir_per_class: | ||
path = lab_dir[1][i % cur_size] | ||
f.write('{} {}\n'.format(path, labels[lab_dir[0]])) | ||
i += 1 | ||
|
||
def write_full_dir_map_file(map_path, root_dir, directories, max_num_items=100000, sample_interval=1): | ||
""" | ||
Creates map file out of files in directories. | ||
""" | ||
dir_files = {} | ||
# Get clean list of files from all directories. | ||
for d in directories: | ||
dir_path = os.path.join(root_dir, d) | ||
print 'Processing ' + dir_path | ||
dir_files[d] = sample_dir(root_dir, dir_path, sample_interval) | ||
|
||
cur_items = 0 | ||
with open(map_path, 'w') as f: | ||
for d in dir_files.itervalues(): | ||
for lab, idx in labels.iteritems(): | ||
for path in d[lab]: | ||
f.write('{} {}\n'.format(path, idx)) | ||
cur_items += 1 | ||
if cur_items > max_num_items: | ||
return | ||
|
||
def write_000_map_file(root_dir, map_path): | ||
with open(map_path, 'w') as f: | ||
for lab, idx in labels.iteritems(): | ||
files = enumerate_images(os.path.join(root_dir, os.path.join('000/videos', lab)), root_dir) | ||
for path in files: | ||
f.write('{} {}\n'.format(path, idx)) | ||
|
||
|
||
def main(sample_type, root_dir, train_map, max_train_items, val_map, max_val_items, sample_interval): | ||
print('Creating train map...') | ||
if sample_type == 'undersample': | ||
write_map_file_with_undersampling(train_map, root_dir, train_datasets, | ||
max_num_items=max_train_items, sample_interval=sample_interval) | ||
elif sample_type == 'oversample': | ||
write_map_file_with_oversampling(train_map, root_dir, train_datasets, | ||
max_num_items=max_train_items, sample_interval=sample_interval) | ||
else: | ||
assert False, sample_type | ||
print('Creating validation map...') | ||
# Don't do under/oversampling for validation dataset. | ||
write_full_dir_map_file(val_map, root_dir, val_datasets, | ||
max_num_items=max_val_items, sample_interval=sample_interval) | ||
|
||
if __name__ == '__main__': | ||
parser = argparse.ArgumentParser(description='Create map files from IDSIA Trails dataset.') | ||
parser.add_argument('src_root_dir') | ||
parser.add_argument('path_to_train_map') | ||
parser.add_argument('max_train_items', type=int) | ||
parser.add_argument('path_to_val_map') | ||
parser.add_argument('max_val_items', type=int) | ||
parser.add_argument('-s', '--sample-type', choices=['undersample', 'oversample'], default='undersample') | ||
parser.add_argument('-i', '--sample-interval', type=int, default=1) | ||
args = parser.parse_args() | ||
|
||
main(args.sample_type, args.src_root_dir, args.path_to_train_map, args.max_train_items, | ||
args.path_to_val_map, args.max_val_items, args.sample_interval) | ||
#write_000_map_file(args.src_root_dir, '/data/trails/val_map_000.txt') | ||
#write_full_dir_map_file('/data/trails/val_map_012.txt', args.src_root_dir, test_datasets) | ||
print('All done.') |
Oops, something went wrong.