Skip to content
/ EAGLE Public

Eagle Family: Exploring Model Designs, Data Recipes and Training Strategies for Frontier-Class Multimodal LLMs

Notifications You must be signed in to change notification settings

NVlabs/EAGLE

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

89 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Eagle Family: Exploring Model Designs, Data Recipes and Training Strategies for Frontier-Class Multimodal LLMs

Code License Model License

[📜 Eagle2 Paper] [📜 Eagle1 Paper] [🤗 HF Models] [🗨️ Demo]

Introduction

We are thrilled to release our latest Eagle2 series Vision-Language Model. Open-source Vision-Language Models (VLMs) have made significant strides in narrowing the gap with proprietary models. However, critical details about data strategies and implementation are often missing, limiting reproducibility and innovation. In this project, we focus on VLM post-training from a data-centric perspective, sharing insights into building effective data strategies from scratch. By combining these strategies with robust training recipes and model design, we introduce Eagle2, a family of performant VLMs. Our work aims to empower the open-source community to develop competitive VLMs with transparent processes.

Updates

  • [2025/01] 🔥 Relse Eagle-2 (WIP)
  • [2024/08] Release Eagle-1.

Model Zoo

We provide the following models:

model name LLM Vision Max Length HF Link
Eagle2-1B Qwen2.5-0.5B-Instruct Siglip 16K 🤗 link
Eagle2-2B Qwen2.5-1.5B-Instruct Siglip 16K 🤗 link
Eagle2-9B Qwen2.5-7B-Instruct Siglip+ConvNext 16K 🤗 link

Benchmark Results

Eagle2-1B Results
Benchmark LLaVa-One-Vision-0.5B InternVL2-1B InternVL2.5-1B Qwen2-VL-2B Eagle2-1B
DocVQAtest 70.0 81.7 84.8 90.1 81.8
ChartQAtest 61.4 72.9 75.9 73.0 77.0
InfoVQAtest 41.8 50.9 56.0 65.5 54.8
TextVQAval - 70.0 72.0 79.7 76.6
OCRBench 565 754 785 809 767
MMEsum 1438.0 1794.4 1950.5 1872.0 1790.2
RealWorldQA 55.6 50.3 57.5 62.6 55.4
AI2Dtest 57.1 64.1 69.3 74.7 70.9
MMMUval 31.4 36.7 40.9 41.1 38.8
MMVetGPT-4-Turbo 32.2 32.7 48.8 49.5 40.9
MathVistatestmini 33.8 37.7 43.2 43.0 45.3
MMstar 37.7 45.7 50.1 48.0 48.5
Eagle2-2B Results
Benchmark InternVL2-2B InternVL2.5-2B InternVL2-4B Qwen2-VL-2B Eagle2-2B
DocVQAtest 86.9 88.7 89.2 90.1 88.0
ChartQAtest 76.2 79.2 81.5 73.0 82.0
InfoVQAtest 58.9 60.9 67.0 65.5 65.8
TextVQAval 73.4 74.3 74.4 79.7 79.1
OCRBench 784 804 788 809 818
MMEsum 1876.8 2138.2 2059.8 1872.0 2109.8
RealWorldQA 57.3 60.1 60.7 62.6 63.1
AI2Dtest 74.1 74.9 74.7 78.9 79.3
MMMUval 36.3 43.6 47.9 41.1 43.1
MMVetGPT-4-Turbo 39.5 60.8 51.0 49.5 53.8
HallBenchavg 37.9 42.6 41.9 41.7 45.8
MathVistatestmini 46.3 51.3 58.6 43.0 54.7
MMstar 50.1 53.7 54.3 48.0 56.4
Eagle2-9B Results
Benchmark MiniCPM-Llama3-V-2_5 InternVL-Chat-V1-5 InternVL2-8B QwenVL2-7B Eagle2-9B
Model Size 8.5B 25.5B 8.1B 8.3B 8.9B
DocVQAtest 84.8 90.9 91.6 94.5 92.6
ChartQAtest - 83.8 83.3 83.0 86.4
InfoVQAtest - 72.5 74.8 74.3 77.2
TextVQAval 76.6 80.6 77.4 84.3 83.0
OCRBench 725 724 794 845 868
MMEsum 2024.6 2187.8 2210.3 2326.8 2260
RealWorldQA 63.5 66.0 64.4 70.1 69.3
AI2Dtest 78.4 80.7 83.8 - 83.9
MMMUval 45.8 45.2 / 46.8 49.3 / 51.8 54.1 56.1
MMBench_V11test 79.5 79.4 80.6
MMVetGPT-4-Turbo 52.8 55.4 54.2 62.0 62.2
SEED-Image 72.3 76.0 76.2 77.1
HallBenchavg 42.4 49.3 45.2 50.6 49.3
MathVistatestmini 54.3 53.5 58.3 58.2 63.8
MMstar - - 60.9 60.7 62.6

Stremlit Demo

We provide a local chat demo powered by Streamlit to help users get started with Eagle2 quickly and easily. This demo is built upon InternVL's template and extends it with additional video input support for enhanced functionality.

Inference

We provide a inference script to help you quickly start using the model. We support different input types:

  • pure text input
  • single image input
  • multiple image input
  • video input

0. Install the dependencies

pip install transformers==4.37.2
pip install flash-attn

Note: Latest version of transformers is not compatible with the model.

1. Prepare the Model worker

Click to expand
"""
A model worker executes the model.
Copied and modified from https://github.com/OpenGVLab/InternVL/blob/main/streamlit_demo/model_worker.py
"""
# Importing torch before transformers can cause `segmentation fault`
from transformers import AutoModel, AutoTokenizer, TextIteratorStreamer, AutoConfig

import argparse
import base64
import json
import os
import decord
import threading
import time
from io import BytesIO
from threading import Thread
import math
import requests
import torch
import torchvision.transforms as T
from PIL import Image
from torchvision.transforms.functional import InterpolationMode
import numpy as np


IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)

SIGLIP_MEAN = (0.5, 0.5, 0.5)
SIGLIP_STD = (0.5, 0.5, 0.5)


def get_seq_frames(total_num_frames, desired_num_frames=-1, stride=-1):
    """
    Calculate the indices of frames to extract from a video.

    Parameters:
    total_num_frames (int): Total number of frames in the video.
    desired_num_frames (int): Desired number of frames to extract.

    Returns:
    list: List of indices of frames to extract.
    """
    
    assert desired_num_frames > 0 or stride > 0 and not (desired_num_frames > 0 and stride > 0)

    if stride > 0:
        return list(range(0, total_num_frames, stride))
    
    # Calculate the size of each segment from which a frame will be extracted
    seg_size = float(total_num_frames - 1) / desired_num_frames

    seq = []
    for i in range(desired_num_frames):
        # Calculate the start and end indices of each segment
        start = int(np.round(seg_size * i))
        end = int(np.round(seg_size * (i + 1)))

        # Append the middle index of the segment to the list
        seq.append((start + end) // 2)

    return seq

def build_video_prompt(meta_list, num_frames, time_position=False):
    # if time_position is True, the frame_timestamp is used.
    # 1. pass time_position, 2. use env TIME_POSITION
    time_position = os.environ.get("TIME_POSITION", time_position)
    prefix = f"This is a video:\n"
    for i in range(num_frames):
        if time_position:
            frame_txt = f"Frame {i+1} sampled at {meta_list[i]:.2f} seconds: <image>\n"
        else:
            frame_txt = f"Frame {i+1}: <image>\n"
        prefix += frame_txt
    return prefix

def load_video(video_path, num_frames=64, frame_cache_root=None):
    if isinstance(video_path, str):
        video = decord.VideoReader(video_path)
    elif isinstance(video_path, dict):
        assert False, 'we not support vidoe: "video_path" as input'
    fps = video.get_avg_fps()
    sampled_frames = get_seq_frames(len(video), num_frames)
    samepld_timestamps = [i / fps for i in sampled_frames]
    frames = video.get_batch(sampled_frames).asnumpy()
    images = [Image.fromarray(frame) for frame in frames]
    
    return images, build_video_prompt(samepld_timestamps, len(images), time_position=True)

def load_image(image):
    if isinstance(image, str) and os.path.exists(image):
        return Image.open(image)
    elif isinstance(image, dict):
        if 'disk_path' in image:
            return Image.open(image['disk_path'])
        elif 'base64' in image:
            return Image.open(BytesIO(base64.b64decode(image['base64'])))
        elif 'url' in image:
            response = requests.get(image['url'])
            return Image.open(BytesIO(response.content))
        elif 'bytes' in image:
            return Image.open(BytesIO(image['bytes']))
        else:
            raise ValueError(f'Invalid image: {image}')
    else:
        raise ValueError(f'Invalid image: {image}')

def build_transform(input_size, norm_type='imagenet'):
    if norm_type == 'imagenet':
        MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
    elif norm_type == 'siglip':
        MEAN, STD = SIGLIP_MEAN, SIGLIP_STD
        
    transform = T.Compose([
        T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
        T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
        T.ToTensor(),
        T.Normalize(mean=MEAN, std=STD)
    ])
    return transform


def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
    """
    previous version mainly foucs on ratio.
    We also consider area ratio here.
    """
    best_factor = float('-inf')
    best_ratio = (1, 1)
    area = width * height
    for ratio in target_ratios:
        target_aspect_ratio = ratio[0] / ratio[1]
        ratio_diff = abs(aspect_ratio - target_aspect_ratio)
        area_ratio = (ratio[0]*ratio[1]*image_size*image_size)/ area
        """
        new area > 60% of original image area is enough.
        """
        factor_based_on_area_n_ratio = min((ratio[0]*ratio[1]*image_size*image_size)/ area, 0.6)* \
                                     min(target_aspect_ratio/aspect_ratio, aspect_ratio/target_aspect_ratio)
        
        if factor_based_on_area_n_ratio > best_factor:
            best_factor = factor_based_on_area_n_ratio
            best_ratio = ratio
        
    return best_ratio


def dynamic_preprocess(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False):
    orig_width, orig_height = image.size
    aspect_ratio = orig_width / orig_height

    # calculate the existing image aspect ratio
    target_ratios = set(
        (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
        i * j <= max_num and i * j >= min_num)
    target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])

    # find the closest aspect ratio to the target
    target_aspect_ratio = find_closest_aspect_ratio(
        aspect_ratio, target_ratios, orig_width, orig_height, image_size)

    # calculate the target width and height
    target_width = image_size * target_aspect_ratio[0]
    target_height = image_size * target_aspect_ratio[1]
    blocks = target_aspect_ratio[0] * target_aspect_ratio[1]

    # resize the image
    resized_img = image.resize((target_width, target_height))
    processed_images = []
    for i in range(blocks):
        box = (
            (i % (target_width // image_size)) * image_size,
            (i // (target_width // image_size)) * image_size,
            ((i % (target_width // image_size)) + 1) * image_size,
            ((i // (target_width // image_size)) + 1) * image_size
        )
        # split the image
        split_img = resized_img.crop(box)
        processed_images.append(split_img)
    assert len(processed_images) == blocks
    if use_thumbnail and len(processed_images) != 1:
        thumbnail_img = image.resize((image_size, image_size))
        processed_images.append(thumbnail_img)
    return processed_images

def split_model(model_path, device):

    device_map = {}
    world_size = torch.cuda.device_count()
    config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
    num_layers = config.llm_config.num_hidden_layers

    print('world_size', world_size)
    num_layers_per_gpu_ = math.floor(num_layers / (world_size - 1))
    num_layers_per_gpu = [num_layers_per_gpu_] * world_size
    num_layers_per_gpu[device] = num_layers - num_layers_per_gpu_ * (world_size-1)
    print(num_layers_per_gpu)
    layer_cnt = 0
    for i, num_layer in enumerate(num_layers_per_gpu):
        for j in range(num_layer):
            device_map[f'language_model.model.layers.{layer_cnt}'] = i
            layer_cnt += 1
    device_map['vision_model'] = device
    device_map['mlp1'] = device
    device_map['language_model.model.tok_embeddings'] = device
    device_map['language_model.model.embed_tokens'] = device
    device_map['language_model.output'] = device
    device_map['language_model.model.norm'] = device
    device_map['language_model.lm_head'] = device
    device_map['language_model.model.rotary_emb'] = device
    device_map[f'language_model.model.layers.{num_layers - 1}'] = device
    return device_map

class ModelWorker:
    def __init__(self, model_path, model_name,
                 load_8bit, device):

        if model_path.endswith('/'):
            model_path = model_path[:-1]
        if model_name is None:
            model_paths = model_path.split('/')
            if model_paths[-1].startswith('checkpoint-'):
                self.model_name = model_paths[-2] + '_' + model_paths[-1]
            else:
                self.model_name = model_paths[-1]
        else:
            self.model_name = model_name

        print(f'Loading the model {self.model_name}')

        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True, use_fast=False)
        tokens_to_keep = ['<box>', '</box>', '<ref>', '</ref>']
        tokenizer.additional_special_tokens = [item for item in tokenizer.additional_special_tokens if item not in tokens_to_keep]
        self.tokenizer = tokenizer
        config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
        model_type = config.vision_config.model_type
        self.device = torch.cuda.current_device()
        if model_type == 'siglip_vision_model':
            self.norm_type = 'siglip'
        elif model_type == 'MOB':
            self.norm_type = 'siglip'
        else:
            self.norm_type = 'imagenet'

        if any(x in model_path.lower() for x in ['34b']):
            device_map = split_model(model_path, self.device)
        else:
            device_map = None
        
        if device_map is not None:    
            self.model = AutoModel.from_pretrained(model_path, torch_dtype=torch.bfloat16,
                                               low_cpu_mem_usage=True,
                                               device_map=device_map, 
                                               trust_remote_code=True,
                                               load_in_8bit=load_8bit).eval()
        else:
            self.model = AutoModel.from_pretrained(model_path, torch_dtype=torch.bfloat16,
                                               trust_remote_code=True,
                                               load_in_8bit=load_8bit).eval()  

        if not load_8bit and device_map is None:
            self.model = self.model.to(device)
        self.load_8bit = load_8bit
        
        self.model_path = model_path
        self.image_size = self.model.config.force_image_size
        self.context_len = tokenizer.model_max_length
        self.per_tile_len = 256

    def reload_model(self):
        del self.model
        torch.cuda.empty_cache()
        if self.device == 'auto':
            os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
            # This can make distributed deployment work properly
            self.model = AutoModel.from_pretrained(
                self.model_path,
                load_in_8bit=self.load_8bit,
                torch_dtype=torch.bfloat16,
                device_map=self.device_map,
                trust_remote_code=True).eval()
        else:
            self.model = AutoModel.from_pretrained(
                self.model_path,
                load_in_8bit=self.load_8bit,
                torch_dtype=torch.bfloat16,
                trust_remote_code=True).eval()
        if not self.load_8bit and not self.device == 'auto':
            self.model = self.model.cuda()

    @torch.inference_mode()
    def generate(self, params):
        system_message = params['prompt'][0]['content']
        send_messages = params['prompt'][1:]
        max_input_tiles = params['max_input_tiles']
        temperature = params['temperature']
        top_p = params['top_p']
        max_new_tokens = params['max_new_tokens']
        repetition_penalty = params['repetition_penalty']
        video_frame_num = params.get('video_frame_num', 64)
        do_sample = True if temperature > 0.0 else False

        global_image_cnt = 0
        history, pil_images, max_input_tile_list = [], [], []
        for message in send_messages:
            if message['role'] == 'user':
                prefix = ''
                if 'image' in message:
                    for image_data in message['image']:
                        pil_images.append(load_image(image_data))
                        prefix = prefix + f'<image {global_image_cnt + 1}><image>\n'
                        global_image_cnt += 1
                        max_input_tile_list.append(max_input_tiles)
                if 'video' in message:
                    for video_data in message['video']:
                        video_frames, tmp_prefix = load_video(video_data, num_frames=video_frame_num)
                        pil_images.extend(video_frames)
                        prefix = prefix + tmp_prefix
                        global_image_cnt += len(video_frames)
                        max_input_tile_list.extend([1] * len(video_frames))
                content = prefix + message['content']
                history.append([content, ])
            else:
                history[-1].append(message['content'])
        question, history = history[-1][0], history[:-1]

        if global_image_cnt == 1:
            question = question.replace('<image 1><image>\n', '<image>\n')
            history = [[item[0].replace('<image 1><image>\n', '<image>\n'), item[1]] for item in history]


        try:
            assert len(max_input_tile_list) == len(pil_images), 'The number of max_input_tile_list and pil_images should be the same.'
        except Exception as e:
            from IPython import embed; embed()
            exit()
            print(f'Error: {e}')
            print(f'max_input_tile_list: {max_input_tile_list}, pil_images: {pil_images}')
            # raise e

        old_system_message = self.model.system_message
        self.model.system_message = system_message
        
        transform = build_transform(input_size=self.image_size, norm_type=self.norm_type)
        if len(pil_images) > 0:
            max_input_tiles_limited_by_contect = params['max_input_tiles']
            while True:
                image_tiles = []
                for current_max_input_tiles, pil_image in zip(max_input_tile_list, pil_images):
                    if self.model.config.dynamic_image_size:
                        tiles = dynamic_preprocess(
                            pil_image, image_size=self.image_size, max_num=min(current_max_input_tiles, max_input_tiles_limited_by_contect),
                            use_thumbnail=self.model.config.use_thumbnail)
                    else:
                        tiles = [pil_image]
                    image_tiles += tiles
                if (len(image_tiles) * self.per_tile_len < self.context_len):
                    break
                else:
                    max_input_tiles_limited_by_contect -= 2
                
                if max_input_tiles_limited_by_contect < 1:
                    break
                    
            pixel_values = [transform(item) for item in image_tiles]
            pixel_values = torch.stack(pixel_values).to(self.model.device, dtype=torch.bfloat16)
            print(f'Split images to {pixel_values.shape}')
        else:
            pixel_values = None

        generation_config = dict(
            num_beams=1,
            max_new_tokens=max_new_tokens,
            do_sample=do_sample,
            temperature=temperature,
            repetition_penalty=repetition_penalty,
            max_length=self.context_len,
            top_p=top_p,
        )

        response = self.model.chat(
            tokenizer=self.tokenizer,
            pixel_values=pixel_values,
            question=question,
            history=history,
            return_history=False,
            generation_config=generation_config,
        )
        self.model.system_message = old_system_message
        return {'text': response, 'error_code': 0}





if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--model-path', type=str, default='nvidia/Eagle2-1B')
    parser.add_argument('--model-name', type=str, default='Eagle2-1B')
    parser.add_argument('--device', type=str, default='cuda')
    parser.add_argument('--load-8bit', action='store_true')
    args = parser.parse_args()
    print(f'args: {args}')

    worker = ModelWorker(
                         args.model_path,
                         args.model_name,
                         args.load_8bit,
                         args.device)

2. Prepare the Prompt

  • Single image input
prompt = [
        {'role': 'system', 'content': 'You are a helpful assistant.'},
        {'role': 'user', 'content': 'Describe this image in details.', 
            'image':[
                {'url': 'https://www.nvidia.com/content/dam/en-zz/Solutions/about-nvidia/logo-and-brand/[email protected]'}
            ],
        }
    ]
  • Multiple image input
prompt = [
        {'role': 'system', 'content': 'You are a helpful assistant.'},
        {'role': 'user', 'content': 'Describe these two images in details.', 
            'image':[
                {'url': 'https://www.nvidia.com/content/dam/en-zz/Solutions/about-nvidia/logo-and-brand/[email protected]'},
                {'url': 'https://www.nvidia.com/content/dam/en-zz/Solutions/about-nvidia/logo-and-brand/[email protected]'}
            ],
        }
    ]
  • Video input
prompt = [
        {'role': 'system', 'content': 'You are a helpful assistant.'},
        {'role': 'user', 'content': 'Describe this video in details.', 
            'video':[
                'path/to/your/video.mp4'
            ],
        }
    ]

3. Generate the response

params = {
    'prompt': prompt,
    'max_input_tiles': 24,
    'temperature': 0.7,
    'top_p': 1.0,
    'max_new_tokens': 4096,
    'repetition_penalty': 1.0,
    }
worker.generate(params)

Evaluation

We evaluate the performance of Eagle2 based on VLMEvalKit. We temporarily provide a custom vlmeval implementation that supports Eagle2 in our repo, and we will support Eagle2 in the official version as soon as possible.

TODO

  • Support vLLM Inference
  • Provide AWQ Quantization Weights
  • Provide fine-tuning scripts

Citation

If you find this project useful, please cite our work:

@article{shi2024eagle,
    title = {Eagle: Exploring The Design Space for Multimodal LLMs with Mixture of Encoders}, 
    author={Min Shi and Fuxiao Liu and Shihao Wang and Shijia Liao and Subhashree Radhakrishnan and De-An Huang and Hongxu Yin and Karan Sapra and Yaser Yacoob and Humphrey Shi and Bryan Catanzaro and Andrew Tao and Jan Kautz and Zhiding Yu and Guilin Liu},
    journal={arXiv:2408.15998},
    year={2024}
}

License/Terms of Use

  • The code is released under the Apache 2.0 license as found in the LICENSE file.
  • The pretrained model weights are released under the Creative Commons Attribution: Non-Commercial 4.0 International
  • The service is a research preview intended for non-commercial use only, and is subject to the following licenses and terms:
    • Model License of Qwen2.5-7B-Instruct: Apache-2.0
    • Model License of LLama: Llama community license
    • Model License of PaliGemma: Gemma license
    • Furthermore, users are reminded to ensure that their use of the dataset and checkpoints is in compliance with all applicable laws and regulations.

Acknowledgement

  • InternVL: we built the codebase based on InternVL. Thanks for the great open-source project.

  • VLMEvalKit: We use vlmeval for evaluation. Many thanks for their wonderful tools.

  • Thanks to Cambrian, LLaVA-One-Vision and more great work for their efforts in organizing open-source data.

Releases

No releases published

Packages

No packages published

Languages