Skip to content

Nicolinho/RoboVLM

Repository files navigation

RoboVLM

This is an open-source implementation tailored for utilizing VLMs in instruction-based robot control. This implementation supports a variety of VLM architectures and facilitates straightforward integration of new models.

plot

The approach implemented here is similar to RT-2. Different from RT-2, we support open-source Vision Language Models (VLMs) like BLIP, LLava, and QWen.

Installation

conda create -n llamaex python=3.10

For cuda 11, required if nvidida driver is too old

conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia
pip install transformers transformers[torch] datasets evaluate torchvision sentencepiece accelerate open_clip_torch
pip install scikit-learn scipy wandb absl-py nltk rouge_score loralib bitsandbytes git+https://github.com/huggingface/peft.git matplotlib

For evaluation

pip install opencv-python hydra-core

TF cpu version for loading the dataset

pip install https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow_cpu-2.15.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl

For open-x dataset

pip install dm-reverb rlds tensorflow-datasets

For Qwen

pip install open_clip_torch install tiktoken einops transformers_stream_generator

For Qwen 4bit

pip install optimum

and depending on pytorch cuda version and pytorch version install autogptq, select version from https://github.com/AutoGPTQ/AutoGPTQ/blob/main/docs/INSTALLATION.md . E.g.

pip install auto-gptq==0.6.0 --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/

Maybe flash attention, check hardware compatibility Follow https://github.com/Dao-AILab/flash-attention?tab=readme-ov-file#installation-and-features

FLASH_ATTENTION_SKIP_CUDA_BUILD=TRUE pip install flash-attn --no-build-isolation

Run an experiment

Training scripts for each model can be found under scripts.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published