-
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
4c30e92
commit 58804c0
Showing
1 changed file
with
68 additions
and
49 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -3,24 +3,32 @@ | |
<head> | ||
<!-- Meta Tags for SEO --> | ||
<meta charset="UTF-8"> | ||
<meta name="description" content="Join the Introduction to Privacy-Preserving Machine Learning (PPML) workshop and learn how to protect sensitive data while leveraging the power of machine learning with PySyft and PyTorch."> | ||
<meta name="keywords" content="Privacy-Preserving Machine Learning, PPML, PySyft, PyTorch, OpenMined, Federated Learning, Differential Privacy, Encrypted ML, Workshop"> | ||
<meta name="description" | ||
content="Join the Introduction to Privacy-Preserving Machine Learning (PPML) workshop and learn how to protect sensitive data while leveraging the power of machine learning with PySyft and PyTorch."> | ||
<meta name="keywords" | ||
content="Privacy-Preserving Machine Learning, PPML, PySyft, PyTorch, OpenMined, Federated Learning, Differential Privacy, Encrypted ML, Workshop"> | ||
<meta name="author" content="Valerio Maggio, OpenMined"> | ||
<meta name="viewport" content="width=device-width, initial-scale=1.0"> | ||
<meta name="robots" content="index, follow"> | ||
|
||
<!-- Open Graph Meta Tags for Social Media --> | ||
<meta property="og:title" content="Introduction to Privacy-Preserving Machine Learning Workshop"> | ||
<meta property="og:description" content="Learn how to protect sensitive data in machine learning with the Introduction to PPML workshop, using PySyft and PyTorch."> | ||
<meta property="og:image" content="https://openmined.github.io/intro-to-ppml-workshop/assets/imgs/OpenMined-Logo-Stacked-Light.png"> | ||
<meta property="og:title" | ||
content="Introduction to Privacy-Preserving Machine Learning Workshop"> | ||
<meta property="og:description" | ||
content="Learn how to protect sensitive data in machine learning with the Introduction to PPML workshop, using PySyft and PyTorch."> | ||
<meta property="og:image" | ||
content="https://openmined.github.io/intro-to-ppml-workshop/assets/imgs/OpenMined-Logo-Stacked-Light.png"> | ||
<meta property="og:url" content="https://openmined.github.io/intro-to-ppml-workshop/"> | ||
<meta property="og:type" content="website"> | ||
|
||
<!-- Twitter Card Meta Tags --> | ||
<meta name="twitter:card" content="summary_large_image"> | ||
<meta name="twitter:title" content="Introduction to Privacy-Preserving Machine Learning Workshop"> | ||
<meta name="twitter:description" content="Discover how to protect sensitive data in machine learning with PySyft and PyTorch in this PPML workshop."> | ||
<meta name="twitter:image" content="https://openmined.github.io/intro-to-ppml-workshop/assets/imgs/OpenMined-Logo-Stacked-Light.png"> | ||
<meta name="twitter:title" | ||
content="Introduction to Privacy-Preserving Machine Learning Workshop"> | ||
<meta name="twitter:description" | ||
content="Discover how to protect sensitive data in machine learning with PySyft and PyTorch in this PPML workshop."> | ||
<meta name="twitter:image" | ||
content="https://openmined.github.io/intro-to-ppml-workshop/assets/imgs/OpenMined-Logo-Stacked-Light.png"> | ||
|
||
<link href="https://cdn.jsdelivr.net/npm/[email protected]/dist/css/bootstrap.min.css" | ||
rel="stylesheet" | ||
|
@@ -57,7 +65,11 @@ | |
<script async src="https://www.googletagmanager.com/gtag/js?id=G-CGS9YL8FFD"></script> | ||
<script> | ||
window.dataLayer = window.dataLayer || []; | ||
function gtag(){dataLayer.push(arguments);} | ||
|
||
function gtag() { | ||
dataLayer.push(arguments); | ||
} | ||
|
||
gtag('js', new Date()); | ||
|
||
gtag('config', 'G-CGS9YL8FFD'); | ||
|
@@ -90,17 +102,25 @@ <h1 class="display-3 title"> | |
<div class="col"> | ||
<h3><span>Overview</span></h3> | ||
<p>This one-hour live webinar will introduce participants to the fundamentals of | ||
Privacy Preserving Machine Learning (<code>PPML</code>). The session will | ||
introduce key | ||
PPML concepts such as Federated Learning, Differential Privacy, and | ||
Homomorphic Encryption, giving participants a foundational understanding of | ||
how to balance privacy and transparency with the effectiveness of ML models. | ||
During the webinar, attendees will get practical insights into integrating | ||
privacy-preserving techniques into ML workflows using PySyft - an open | ||
source tool for secure and private machine learning. | ||
Privacy Preserving Machine Learning (<code>PPML</code>). The session | ||
explores essential PPML concepts including Federated Learning, Differential | ||
Privacy, and Homomorphic Encryption, providing participants with a | ||
foundational understanding of balancing privacy and transparency in ML model | ||
development. Through practical demonstrations, attendees will learn to | ||
integrate privacy-preserving techniques into ML workflows using OpenMined. | ||
Participants will explore | ||
<a href="https://docs.openmined.org" | ||
target="_blank" | ||
title="PySyft Documentation">PySyft</a>, a | ||
powerful open-source framework for | ||
secure and private machine learning, alongside <a | ||
href="syftbox-documentation.openmined.org" target="_blank" | ||
title="SyftBox Documentation">SyftBox</a>—OpenMined's latest | ||
project designed to make development with Privacy-Enhancing Technologies | ||
more intuitive and developer-friendly. | ||
</p> | ||
<p> | ||
<a href="https://forms.gle/UvCtBS8kh6mCJSyW8" | ||
<a href="https://forms.gle/n5HHuZCmBah5frHk7" | ||
title="PPML Webinar Registration form" target="_blank"> | ||
<span style="font-size: 2.2rem"><strong>Register here</strong></span> | ||
</a> | ||
|
@@ -117,20 +137,22 @@ <h3><span>Objectives</span></h3> | |
<li>Learn the basics of Federated Learning, Differential Privacy, and | ||
Homomorphic Encryption. | ||
</li> | ||
<li>Learn how PySyft enables privacy-preserving Machine learning</li> | ||
<li>Learn how PySyft and SyftBox enables privacy-preserving Machine learning</li> | ||
</ol> | ||
</div> | ||
</div> | ||
</section> | ||
<section id="datetime"> | ||
<div class="row"> | ||
<div class="col-md-10"> | ||
<h3><span> When & When</span></h3> | ||
<h3><span> When & Where</span></h3> | ||
<ul> | ||
<li><strong>Date:</strong> Thursday, 14 November 2024</li> | ||
<li><strong>Time:</strong> 5 PM GMT / 6 PM CET / 12 PM EST / 9 AM PST </li> | ||
<li><strong>Date:</strong> Wednesday, 4 December 2024</li> | ||
<li><strong>Time:</strong> 5 PM GMT / 6 PM CET / 12 PM EST / 9 AM PST</li> | ||
<li><strong>Duration:</strong> 1 hour</li> | ||
<li><strong>Location:</strong> Online (Information will be shared with attendees after registration) </li> | ||
<li><strong>Location:</strong> Online (Information will be shared with | ||
attendees after registration) | ||
</li> | ||
</ul> | ||
</div> | ||
</div> | ||
|
@@ -155,29 +177,38 @@ <h3><span>Target Audience</span></h3> | |
<div class="col-md-10"> | ||
<h3><span>Webinar Agenda</span></h3> | ||
<ul class="agenda"> | ||
<li><strong>Introduction to PPML and PySyft</strong> (10 minutes): | ||
<li>Opening and Welcome (5 mins)</li> | ||
<li><strong>Introduction to PPML and PETs</strong> (10 minutes): | ||
<ul> | ||
<li>Importance of privacy in Machine learning.</li> | ||
<li>Overview of PySyft as a tool for privacy-preserving ML development.</li> | ||
<li>Intro to PETs: Privacy Enhancing Techniques (PETs)</li> | ||
<li>Different Types of PETs</li> | ||
</ul> | ||
</li> | ||
<li><strong>Core PPML Methods</strong> (30 minutes): | ||
<li><strong>Core PPML Methods</strong> (20 minutes): | ||
<ul> | ||
<li><strong>Federated Learning</strong>: Training models across decentralized data | ||
<li><strong>Federated Learning</strong>: Training models across | ||
decentralized data | ||
sources. | ||
</li> | ||
<li><strong>Differential Privacy</strong>: Adding noise to data to maintain | ||
<li><strong>Differential Privacy</strong>: Adding noise to data to | ||
maintain | ||
individual privacy in ML models. | ||
</li> | ||
<li><strong>Homomorphic Encryption</strong>: Secure computations on encrypted | ||
<li><strong>Homomorphic Encryption</strong>: Secure computations on | ||
encrypted | ||
data. | ||
</li> | ||
|
||
</ul> | ||
</li> | ||
<li><strong>PPML in PySyft with Structured Transparency</strong> (10 minutes): | ||
<li><strong>OpenMined and Privacy Tools</strong> (15 minutes): | ||
minutes): | ||
<ul> | ||
<li>PPML in practice using PySyft, and the Structured Transparency framework</li> | ||
<li>PPML in practice using PySyft, and the Structured Transparency | ||
framework | ||
</li> | ||
<li>SyftBox at a first glance!</li> | ||
</ul> | ||
</li> | ||
<li><strong>Q&A Session</strong> (10 minutes): | ||
|
@@ -193,29 +224,17 @@ <h3><span>Webinar Agenda</span></h3> | |
<div class="row"> | ||
<div class="col"> | ||
<h3><span>Takeaways</span></h3> | ||
<p>Participants will leave with a solid understanding of PPML, its importance, and how it can be | ||
<p>Participants will leave with a solid understanding of PPML, its importance, | ||
and how it can be | ||
applied to machine learning or data science workflows.</p> | ||
<p>This webinar is an ideal starting point for professionals seeking hands-on tools like PySyft to | ||
ensure data privacy while leveraging the full potential of machine learning in sensitive | ||
<p>This webinar is an ideal starting point for professionals seeking hands-on | ||
tools like PySyft and SyftBox to | ||
ensure data privacy while leveraging the full potential of machine learning | ||
in sensitive | ||
environments.</p> | ||
</div> | ||
</div> | ||
</section> | ||
<section id="materials"> | ||
<div class="row"> | ||
<div class="col"> | ||
<h3><span>Materials</span> | ||
<img src="./assets/imgs/gh-logo.png" class="gh-logo"/></h3> | ||
<p>Materials will be made available on this | ||
<a href="https://github.com/openmined/intro-to-ppml" | ||
title="Intro to PPML Repository" target="_blank"> | ||
<strong>Github Repository</strong> | ||
</a> | ||
in due course. | ||
</p> | ||
</div> | ||
</div> | ||
</section> | ||
</div> | ||
</main> | ||
</body> | ||
|