-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
4 changed files
with
211 additions
and
46 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -5,3 +5,5 @@ | |
|
||
# simplified | ||
from cat2cat.cat2cat import cat2cat | ||
|
||
from cat2cat.cat2cat_ml import cat2cat_ml_run |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,188 @@ | ||
from pandas import DataFrame, concat | ||
from numpy import arange, repeat, setdiff1d, in1d, intersect1d, sum, NaN, mean | ||
|
||
from sklearn.model_selection import train_test_split | ||
|
||
from cat2cat.mappings import get_mappings, get_freqs, cat_apply_freq | ||
from cat2cat.dataclass import cat2cat_data, cat2cat_mappings, cat2cat_ml | ||
from cat2cat.cat2cat_utils import dummy_c2c | ||
|
||
from typing import Optional, Any, Dict | ||
|
||
__all__ = ["cat2cat_ml_run"] | ||
|
||
|
||
class cat2cat_ml_run_class: | ||
def __init__(self, res) -> Dict: | ||
self.res = res | ||
|
||
def __str__(self) -> str: | ||
str(self.res) | ||
|
||
def __repr__(self) -> str: | ||
str(self.res) | ||
|
||
|
||
def cat2cat_ml_run( | ||
mappings: cat2cat_mappings, ml: cat2cat_ml, **kwargs: Any | ||
) -> cat2cat_ml_run_class: | ||
"""Automatic mapping in a panel dataset - cat2cat procedure | ||
Args: | ||
mappings (cat2cat_mappings): dataclass with mappings related arguments. | ||
Please check out the `cat2cat.dataclass.cat2cat_mappings` for more information. | ||
ml (Optional[cat2cat_ml]): dataclass with ml related arguments. | ||
Please check out the `cat2cat.dataclass.cat2cat_ml` for more information. | ||
**kwargs: additional arguments passed to the `cat2cat_ml_run` function. | ||
min_match (float): minimum share of categories from the base period that have to be matched in the mapping table. Between 0 and 1. Default 0.8. | ||
Returns: | ||
cat2cat_ml_run_class | ||
Note: | ||
Please check out the `cat2cat.cat2cat.cat2cat` for more information. | ||
>>> from cat2cat import cat2cat | ||
>>> from cat2cat.cat2cat_ml import cat2cat_ml_run | ||
>>> from cat2cat.dataclass import cat2cat_data, cat2cat_mappings, cat2cat_ml | ||
>>> from sklearn.discriminant_analysis import LinearDiscriminantAnalysis | ||
>>> from sklearn.tree import DecisionTreeClassifier | ||
>>> from cat2cat.datasets import load_trans, load_occup | ||
>>> trans = load_trans() | ||
>>> occup = load_occup() | ||
>>> o_old = occup.loc[occup.year == 2008, :].copy() | ||
>>> o_new = occup.loc[occup.year == 2010, :].copy() | ||
>>> mappings = cat2cat_mappings(trans = trans, direction = "forward") | ||
>>> ml = cat2cat_ml( | ||
... occup.loc[occup.year <= 2008, :].copy(), | ||
... "code", | ||
... ["salary", "age", "edu", "sex"], | ||
... [DecisionTreeClassifier(), LinearDiscriminantAnalysis()] | ||
... ) | ||
>>> cat2cat_ml_run(mappings = mappings, ml = ml) | ||
""" | ||
assert isinstance( | ||
mappings, cat2cat_mappings | ||
), "mappings arg has to be cat2cat_mappings instance" | ||
assert isinstance(ml, cat2cat_ml), "ml arg has to be cat2cat_ml instance" | ||
|
||
mapps = get_mappings(mappings.trans) | ||
|
||
if mappings.direction == "forward": | ||
target_name = "new" | ||
base_name = "old" | ||
elif mappings.direction == "backward": | ||
target_name = "old" | ||
base_name = "new" | ||
|
||
mapp = mapps["to_" + base_name] | ||
|
||
cat_var = ml.data[ml.cat_var].values | ||
cat_var_vals = mappings.trans[base_name].unique() | ||
|
||
assert (sum(in1d(cat_var, cat_var_vals)) / len(cat_var)) > kwargs.get( | ||
"min_match", 0.8 | ||
), "The mapping table does not cover all categories in the data. Please check the direction in the mapping table." | ||
|
||
features = ml.features | ||
methods = ml.models | ||
|
||
train_g = {n: g for n, g in ml.data[features + [ml.cat_var]].groupby(ml.cat_var)} | ||
|
||
res = dict() | ||
for cat in mapp.keys(): | ||
try: | ||
matched_cat = mapp.get(cat, None) | ||
g_name = "&".join(matched_cat) | ||
res[g_name] = { | ||
"ncat": len(matched_cat), | ||
"naive": 1 / len(matched_cat), | ||
"acc": dict(zip(methods, repeat(NaN, len(methods)))), | ||
"freq": NaN, | ||
} | ||
data_small_g_list = list() | ||
for g in matched_cat: | ||
if g not in train_g.keys(): | ||
continue | ||
data_small_g_list.append(train_g.get(g)) | ||
if len(data_small_g_list) == 0: | ||
continue | ||
|
||
data_small_g = concat([train_g.get(g) for g in matched_cat], axis=0) | ||
|
||
if ( | ||
(data_small_g.shape[0] < 5) | ||
or (len(matched_cat) < 2) | ||
or (sum(in1d(matched_cat, data_small_g[ml.cat_var])) == 1) | ||
): | ||
continue | ||
|
||
X_train, X_test, y_train, y_test = train_test_split( | ||
data_small_g[features], | ||
data_small_g[ml.cat_var], | ||
test_size=0.2, | ||
random_state=42, | ||
) | ||
|
||
gcounts = y_train.value_counts() | ||
gfreq_max = gcounts.index[0] | ||
res[g_name]["freq"] = mean(gfreq_max == y_test) | ||
|
||
if X_test.shape[0] == 0 | X_train.shape[0] < 5: | ||
continue | ||
|
||
for m in methods: | ||
m.fit(X_train, y_train) | ||
res[g_name]["acc"][m] = m.score(X_test, y_test) | ||
except: | ||
continue | ||
|
||
return res | ||
|
||
|
||
def _cat2cat_ml( | ||
ml: cat2cat_ml, mapp: Dict[Any, Any], target_df: DataFrame, cat_var_target: str | ||
) -> None: | ||
"""cat2cat ml optional part""" | ||
for target_cat in list(mapp.keys()): | ||
base_cats = mapp[target_cat] | ||
ml_cat_var = ml.data[ml.cat_var] | ||
if (not any(in1d(base_cats, ml_cat_var.unique()))) or (len(base_cats) == 1): | ||
continue | ||
|
||
target_cat_index = in1d(target_df[cat_var_target].values, target_cat) | ||
ml_cat_index = in1d(ml.data[ml.cat_var].values, base_cats) | ||
|
||
data_ml_train = ml.data.loc[ml_cat_index, :] | ||
data_ml_target = target_df.loc[target_cat_index, :] | ||
|
||
target_cats = data_ml_target["g_new_c2c"] | ||
data_ml_target_uniq = data_ml_target.drop_duplicates( | ||
subset=["index_c2c"] + list(ml.features) | ||
) | ||
index_c2c = data_ml_target_uniq["index_c2c"].values | ||
|
||
for m in ml.models: | ||
ml_name = type(m).__name__ | ||
ml_colname = "wei_" + ml_name + "_c2c" | ||
|
||
try: | ||
m.fit(X=data_ml_train.loc[:, ml.features], y=data_ml_train[ml.cat_var]) | ||
|
||
X_test = data_ml_target_uniq.loc[:, ml.features] | ||
preds = m.predict_proba(X=X_test) | ||
|
||
preds_df = DataFrame(preds) | ||
preds_df.columns = m.classes_ | ||
preds_df[setdiff1d(target_cats.unique(), m.classes_)] = 0 | ||
preds_df["index_c2c"] = index_c2c | ||
preds_df_melt = preds_df.melt(id_vars="index_c2c", var_name="g_new_c2c") | ||
merge_on = ["index_c2c", "g_new_c2c"] | ||
p_order = target_df.loc[target_cat_index, merge_on].merge( | ||
preds_df_melt, on=merge_on, how="left" | ||
) | ||
target_df.loc[target_cat_index, ml_colname] = p_order["value"].values | ||
except: | ||
pass |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,20 @@ | ||
from cat2cat import cat2cat | ||
from cat2cat import cat2cat_ml_run | ||
from cat2cat.dataclass import cat2cat_data, cat2cat_mappings, cat2cat_ml | ||
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis | ||
from sklearn.tree import DecisionTreeClassifier | ||
from cat2cat.datasets import load_trans, load_occup | ||
|
||
trans = load_trans() | ||
occup = load_occup() | ||
o_old = occup.loc[occup.year == 2008, :].copy() | ||
o_new = occup.loc[occup.year == 2010, :].copy() | ||
mappings = cat2cat_mappings(trans=trans, direction="backward") | ||
ml = cat2cat_ml( | ||
occup.loc[occup.year >= 2010, :].copy(), | ||
"code", | ||
["salary", "age", "edu", "sex"], | ||
[DecisionTreeClassifier(), LinearDiscriminantAnalysis()], | ||
) | ||
cat2cat_ml_run(mappings=mappings, ml=ml) | ||
|