Skip to content

Latest commit

 

History

History
156 lines (111 loc) · 10 KB

BEVDet-r101.md

File metadata and controls

156 lines (111 loc) · 10 KB

RoboBEV Benchmark

The official nuScenes metrics are considered in our benchmark:

Average Precision (AP)

The average precision (AP) defines a match by thresholding the 2D center distance d on the ground plane instead of the intersection over union (IoU). This is done in order to decouple detection from object size and orientation but also because objects with small footprints, like pedestrians and bikes, if detected with a small translation error, give $0$ IoU. We then calculate AP as the normalized area under the precision-recall curve for recall and precision over 10%. Operating points where recall or precision is less than $10$% are removed in order to minimize the impact of noise commonly seen in low precision and recall regions. If no operating point in this region is achieved, the AP for that class is set to zero. We then average over-matching thresholds of $\mathbb{D}={0.5, 1, 2, 4}$ meters and the set of classes $\mathbb{C}$ :

$$ \text{mAP}= \frac{1}{|\mathbb{C}||\mathbb{D}|}\sum_{c\in\mathbb{C}}\sum_{d\in\mathbb{D}}\text{AP}_{c,d} . $$

True Positive (TP)

All TP metrics are calculated using $d=2$ m center distance during matching, and they are all designed to be positive scalars. Matching and scoring happen independently per class and each metric is the average of the cumulative mean at each achieved recall level above $10$%. If a $10$% recall is not achieved for a particular class, all TP errors for that class are set to $1$.

  • Average Translation Error (ATE) is the Euclidean center distance in 2D (units in meters).
  • Average Scale Error (ASE) is the 3D intersection-over-union (IoU) after aligning orientation and translation ($1$ − IoU).
  • Average Orientation Error (AOE) is the smallest yaw angle difference between prediction and ground truth (radians). All angles are measured on a full $360$-degree period except for barriers where they are measured on a $180$-degree period.
  • Average Velocity Error (AVE) is the absolute velocity error as the L2 norm of the velocity differences in 2D (m/s).
  • Average Attribute Error (AAE) is defined as $1$ minus attribute classification accuracy ($1$ − acc).

nuScenes Detection Score (NDS)

mAP with a threshold on IoU is perhaps the most popular metric for object detection. However, this metric can not capture all aspects of the nuScenes detection tasks, like velocity and attribute estimation. Further, it couples location, size, and orientation estimates. nuScenes proposed instead consolidating the different error types into a scalar score:

$$ \text{NDS} = \frac{1}{10} [5\text{mAP}+\sum_{\text{mTP}\in\mathbb{TP}} (1-\min(1, \text{mTP}))] . $$

BEVDet-r101

Corruption NDS mAP mATE mASE mAOE mAVE mAAE
Clean 0.3877 0.3008 0.7035 0.2752 0.5384 0.8715 0.2379
Cam Crash 0.2622 0.1042 0.7821 0.3004 0.6028 0.9783 0.2715
Frame Lost 0.2065 0.0805 0.8248 0.4175 0.6754 1.0578 0.4474
Color Quant 0.2546 0.1566 0.8457 0.3361 0.6966 1.1529 0.3716
Motion Blur 0.2265 0.1278 0.8596 0.3785 0.7112 1.1344 0.4246
Brightness 0.2554 0.1738 0.8094 0.3770 0.7228 1.3752 0.4060
Low Light 0.1118 0.0426 0.9659 0.5550 0.8904 1.3003 0.6836
Fog 0.2495 0.1412 0.8460 0.3269 0.7007 1.1480 0.3376
Snow 0.0810 0.0296 0.9727 0.6758 0.9027 1.1803 0.7869

Experiment Log

Time: Tue Feb 28 20:42:32 2023

Camera Crash

Severity NDS mAP mATE mASE mAOE mAVE mAAE
Easy 0.3082 0.1660 0.7519 0.2753 0.5733 0.8972 0.2503
Moderate 0.2295 0.0736 0.8124 0.3360 0.6021 1.1090 0.3223
Hard 0.2490 0.0731 0.7820 0.2899 0.6331 0.9288 0.2420
Average 0.2622 0.1042 0.7821 0.3004 0.6028 0.9783 0.2715

Frame Lost

Severity NDS mAP mATE mASE mAOE mAVE mAAE
Easy 0.3153 0.1793 0.7470 0.2761 0.5691 0.9157 0.2356
Moderate 0.2121 0.0530 0.8160 0.3389 0.6614 1.1060 0.3272
Hard 0.0922 0.0093 0.9113 0.6376 0.7958 1.1517 0.7795
Average 0.2065 0.0805 0.8248 0.4175 0.6754 1.0578 0.4474

Color Quant

Severity NDS mAP mATE mASE mAOE mAVE mAAE
Easy 0.3533 0.2703 0.7292 0.2771 0.5894 0.9623 0.2605
Moderate 0.2681 0.1561 0.8443 0.2913 0.6634 1.1378 0.3003
Hard 0.1423 0.0435 0.9635 0.4400 0.8370 1.3586 0.5540
Average 0.2546 0.1566 0.8457 0.3361 0.6966 1.1529 0.3716

Motion Blur

Severity NDS mAP mATE mASE mAOE mAVE mAAE
Easy 0.3282 0.2388 0.7663 0.2800 0.6210 1.0018 0.2444
Moderate 0.2220 0.0908 0.8915 0.2927 0.7441 1.0967 0.3060
Hard 0.1293 0.0537 0.9211 0.5629 0.7684 1.3047 0.7233
Average 0.2265 0.1278 0.8596 0.3785 0.7112 1.1344 0.4246

Brightness

Severity NDS mAP mATE mASE mAOE mAVE mAAE
Easy 0.3312 0.2455 0.7542 0.2899 0.6251 1.0659 0.2464
Moderate 0.2380 0.1657 0.8096 0.4172 0.7460 1.4532 0.4756
Hard 0.1969 0.1101 0.8643 0.4239 0.7973 1.6066 0.4959
Average 0.2554 0.1738 0.8094 0.3770 0.7228 1.3752 0.4060

Low Light

Severity NDS mAP mATE mASE mAOE mAVE mAAE
Easy 0.1610 0.0677 0.9284 0.4312 0.8561 1.3176 0.5126
Moderate 0.1235 0.0421 0.9692 0.5079 0.8575 1.4856 0.6406
Hard 0.0508 0.0178 1.0001 0.7258 0.9576 1.0978 0.8977
Average 0.1118 0.0426 0.9659 0.5550 0.8904 1.3003 0.6836

Fog

Severity NDS mAP mATE mASE mAOE mAVE mAAE
Easy 0.2875 0.1819 0.8215 0.2768 0.6697 1.0680 0.2667
Moderate 0.2570 0.1368 0.8542 0.2836 0.6997 1.1161 0.2759
Hard 0.2039 0.1050 0.8624 0.4203 0.7326 1.2599 0.4702
Average 0.2495 0.1412 0.8460 0.3269 0.7007 1.1480 0.3376

Snow

Severity NDS mAP mATE mASE mAOE mAVE mAAE
Easy 0.1332 0.0500 0.9339 0.5057 0.9026 1.2062 0.5758
Moderate 0.0680 0.0238 0.9870 0.7211 0.8795 1.1984 0.8515
Hard 0.0418 0.0151 0.9972 0.8006 0.9261 1.1364 0.9334
Average 0.0810 0.0296 0.9727 0.6758 0.9027 1.1803 0.7869

References

@article{huang2021bevdet,
  title={Bevdet: High-performance multi-camera 3d object detection in bird-eye-view},
  author={Huang, Junjie and Huang, Guan and Zhu, Zheng and Du, Dalong},
  journal={arXiv preprint arXiv:2112.11790},
  year={2021}
}
}