Skip to content

RoboBEV: Robust Bird's Eye View Detection under Corruptions

Notifications You must be signed in to change notification settings

PrettyVirginia/RoboBEV

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

English | 简体中文

RoboBEV: Towards Robust Bird's Eye View Detection under Corruptions

Shaoyuan Xie   Lingdong Kong   Wenwei Zhang   Jiawei Ren   Liang Pan   Kai Chen   Ziwei Liu

About

RoboBEV is the first robustness evaluation benchmark tailored for camera-based bird's eye view (BEV) detection under natural corruptions. It includes eight corruption types that are likely to appear in driving scenarios, ranging from 1sensor failure, 2motion & data processing, 3lighting conditions, and 4weather conditions.

FRONT_LEFT FRONT FRONT_RIGHT FRONT_LEFT FRONT FRONT_RIGHT
BACK_LEFT BACK BACK_RIGHT BACK_LEFT BACK BACK_RIGHT

Visit our project page to explore more examples. 🚙

Updates

  • [2023.02] - The nuScenes-C dataset is pending release for a careful check of potential IP issues.
  • [2023.01] - Launch of the RoboBEV benchmark! In this initial version, we include 10 camera-only BEV detection algorithms (23 variants), evaluated with 8 corruption types across 3 severity levels.

Outline

Installation

Kindly refer to INSTALL.md for the installation details.

Data Preparation

Kindly refer to DATA_PREPARE.md for the details to prepare the nuScenes and nuScenes-C datasets.

Getting Started

Kindly refer to GET_STARTED.md to learn more usage about this codebase.

Model Zoo

 Camera-Only BEV Detection
 Camera-Only Monocular 3D Detection
 LiDAR-Camera Fusion BEV Detection

Robustness Benchmark

📊 Metrics: The nuScenes Detection Score (NDS) is consistently used as the main indicator for evaluating model performance in our benchmark. The following two metrics are adopted to compare between models' robustness:

  • mCE (the lower the better): The average corruption error (in percentage) of a candidate model compared to the baseline model, which is calculated among all corruption types across three severity levels.
  • mRR (the higher the better): The average resilience rate (in percentage) of a candidate model compared to its "clean" performance, which is calculated among all corruption types across three severity levels.

⚙️ Notation: Symbol denotes the baseline model adopted in mCE calculation. For more detailed experimental results, please refer to docs/results.

Model mCE (%) $\downarrow$ mRR (%) $\uparrow$ Clean Cam Crash Frame Lost Color Quant Motion Blur Bright Low Light Fog Snow
DETR3D 100.00 70.77 0.4224 0.2859 0.2604 0.3177 0.2661 0.4002 0.2786 0.3912 0.1913
DETR3DCBGS 99.21 70.02 0.4341 0.2991 0.2685 0.3235 0.2542 0.4154 0.2766 0.4020 0.1925
BEVFormerSmall 101.23 59.07 0.4787 0.2771 0.2459 0.3275 0.2570 0.3741 0.2413 0.3583 0.1809
BEVFormerBase 97.97 60.40 0.5174 0.3154 0.3017 0.3509 0.2695 0.4184 0.2515 0.4069 0.1857
PETRR50-p4 111.01 61.26 0.3665 0.2320 0.2166 0.2472 0.2299 0.2841 0.1571 0.2876 0.1417
PETRVoV-p4 100.69 65.03 0.4550 0.2924 0.2792 0.2968 0.2490 0.3858 0.2305 0.3703 0.2632
ORA3D 99.17 68.63 0.4436 0.3055 0.2750 0.3360 0.2647 0.4075 0.2613 0.3959 0.1898
BEVDetR50 115.12 51.83 0.3770 0.2486 0.1924 0.2408 0.2061 0.2565 0.1102 0.2461 0.0625
BEVDetR101 113.68 53.12 0.3877 0.2622 0.2065 0.2546 0.2265 0.2554 0.1118 0.2495 0.0810
BEVDetR101-pt 112.80 56.35 0.3780 0.2442 0.1962 0.3041 0.2590 0.2599 0.1398 0.2073 0.0939
BEVDetSwinT 116.48 46.26 0.4037 0.2609 0.2115 0.2278 0.2128 0.2191 0.0490 0.2450 0.0680
BEVDepthR50 110.02 56.82 0.4058 0.2638 0.2141 0.2751 0.2513 0.2879 0.1757 0.2903 0.0863
BEVerseSwinT 110.67 48.60 0.4665 0.3181 0.3037 0.2600 0.2647 0.2656 0.0593 0.2781 0.0644
BEVerseSwinS 117.82 49.57 0.4951 0.3364 0.2485 0.2807 0.2632 0.3394 0.1118 0.2849 0.0985
PolarFormerR101 96.06 70.88 0.4602 0.3133 0.2808 0.3509 0.3221 0.4304 0.2554 0.4262 0.2304
PolarFormerVoV 98.75 67.51 0.4558 0.3135 0.2811 0.3076 0.2344 0.4280 0.2441 0.4061 0.2468
SRCN3DR101 99.67 70.23 0.4286 0.2947 0.2681 0.3318 0.2609 0.4074 0.2590 0.3940 0.1920
SRCN3DVoV 102.04 67.95 0.4205 0.2875 0.2579 0.2827 0.2143 0.3886 0.2274 0.3774 0.2499
Sparse4DR101 100.01 55.04 0.5438 0.2873 0.2611 0.3310 0.2514 0.3984 0.2510 0.3884 0.2259
FCOS3Dfinetune 107.82 62.09 0.3949 0.2849 0.2479 0.2574 0.2570 0.3218 0.1468 0.3321 0.1136
BEVFusionCam - - 0.4121 - - - - - - - -
BEVFusionLiDAR - - 0.6928 - - - - - - - -
BEVFusionC+L - - 0.7138 - - - - - - - -

BEV Model Calibration

Model Pretrain Temporal Depth CBGS Backbone EncoderBEV Input Size mCE (%) mRR (%) NDS
DETR3D ResNet Attention 1600×900 100.00 70.77 0.4224
DETR3DCBGS ResNet Attention 1600×900 99.21 70.02 0.4341
BEVFormerSmall ResNet Attention 1280×720 101.23 59.07 0.4787
BEVFormerBase ResNet Attention 1600×900 97.97 60.40 0.5174
PETRR50-p4 ResNet Attention 1408×512 111.01 61.26 0.3665
PETRVoV-p4 VoVNetV2 Attention 1600×900 100.69 65.03 0.4550
ORA3D ResNet Attention 1600×900 99.17 68.63 0.4436
PolarFormerR101 ResNet Attention 1600×900 96.06 70.88 0.4602
PolarFormerVoV VoVNetV2 Attention 1600×900 98.75 67.51 0.4558
SRCN3DR101 ResNet CNN+Attn. 1600×900 99.67 70.23 0.4286
SRCN3DVoV VoVNetV2 CNN+Attn. 1600×900 102.04 67.95 0.4205
Sparse4DR101 ResNet CNN+Attn. 1600×900 100.01 55.04 0.5438
BEVDetR50 ResNet CNN 704×256 115.12 51.83 0.3770
BEVDetR101 ResNet CNN 704×256 113.68 53.12 0.3877
BEVDetR101-pt ResNet CNN 704×256 112.80 56.35 0.3780
BEVDetSwinT Swin CNN 704×256 116.48 46.26 0.4037
BEVDepthR50 ResNet CNN 704×256 110.02 56.82 0.4058
BEVerseSwinT Swin CNN 704×256 137.25 28.24 0.1603
BEVerseSwinT Swin CNN 704×256 110.67 48.60 0.4665
BEVerseSwinS Swin CNN 1408×512 132.13 29.54 0.2682
BEVerseSwinS Swin CNN 1408×512 117.82 49.57 0.4951

Note: Pretrain denotes models initialized from the FCOS3D checkpoint. Temporal indicates whether temporal information is used. Depth denotes models with an explicit depth estimation branch. CBGS highlight models use the class-balanced group-sampling strategy.

Create Corruption Set

You can manage to create your own "RoboBEV" corrpution sets! Follow the instructions listed in CREATE.md.

TODO List

  • Initial release. 🚀
  • Add scripts for creating common corruptions.
  • Add download link of nuScenes-C.
  • Add evaluation scripts on corruption sets.
  • ...

Citation

If you find this work helpful, please kindly consider citing the following:

Paper (to be updated)

@article{xie2023robobev,
    title = {RoboBEV: Robust Bird's Eye View Detection under Corruptions},
    author = {Xie, Shaoyuan and Kong, Lingdong and Zhang, Wenwei and Ren, Jiawei and Pan, Liang and Chen, Kai and Liu, Ziwei},
    journal = {arXiv preprint arXiv:23xx.xxxxx}, 
    year = {2023}
}

Codebase & Benchmark

@misc{xie2023robobev_codebase,
    title = {RoboBEV: Towards Robust Bird's Eye View Detection under Corruptions},
    author = {Xie, Shaoyuan and Kong, Lingdong and Zhang, Wenwei and Ren, Jiawei and Pan, Liang and Chen, Kai and Liu, Ziwei},
    howpublished = {\url{https://github.com/Daniel-xsy/RoboBEV}},
    year = {2023}
}

License

Creative Commons License
This work is under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, while some specific operations in this codebase might be with other licenses. Please refer to LICENSE.md for a more careful check, if you are using our code for commercial matters.

Acknowledgements

To be updated.

About

RoboBEV: Robust Bird's Eye View Detection under Corruptions

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 74.3%
  • Jupyter Notebook 25.1%
  • Shell 0.4%
  • C++ 0.2%
  • Batchfile 0.0%
  • Makefile 0.0%