Skip to content

Latest commit

 

History

History
154 lines (110 loc) · 10.1 KB

BEVerse-Small-SingleFrame.md

File metadata and controls

154 lines (110 loc) · 10.1 KB

RoboBEV Benchmark

The official nuScenes metrics are considered in our benchmark:

Average Precision (AP)

The average precision (AP) defines a match by thresholding the 2D center distance d on the ground plane instead of the intersection over union (IoU). This is done in order to decouple detection from object size and orientation but also because objects with small footprints, like pedestrians and bikes, if detected with a small translation error, give $0$ IoU. We then calculate AP as the normalized area under the precision-recall curve for recall and precision over 10%. Operating points where recall or precision is less than $10$% are removed in order to minimize the impact of noise commonly seen in low precision and recall regions. If no operating point in this region is achieved, the AP for that class is set to zero. We then average over-matching thresholds of $\mathbb{D}={0.5, 1, 2, 4}$ meters and the set of classes $\mathbb{C}$ : $$ \text{mAP}= \frac{1}{|\mathbb{C}||\mathbb{D}|}\sum_{c\in\mathbb{C}}\sum_{d\in\mathbb{D}}\text{AP}_{c,d} . $$

True Positive (TP)

All TP metrics are calculated using $d=2$ m center distance during matching, and they are all designed to be positive scalars. Matching and scoring happen independently per class and each metric is the average of the cumulative mean at each achieved recall level above $10$%. If a $10$% recall is not achieved for a particular class, all TP errors for that class are set to $1$.

  • Average Translation Error (ATE) is the Euclidean center distance in 2D (units in meters).
  • Average Scale Error (ASE) is the 3D intersection-over-union (IoU) after aligning orientation and translation ($1$ − IoU).
  • Average Orientation Error (AOE) is the smallest yaw angle difference between prediction and ground truth (radians). All angles are measured on a full $360$-degree period except for barriers where they are measured on a $180$-degree period.
  • Average Velocity Error (AVE) is the absolute velocity error as the L2 norm of the velocity differences in 2D (m/s).
  • Average Attribute Error (AAE) is defined as $1$ minus attribute classification accuracy ($1$ − acc).

nuScenes Detection Score (NDS)

mAP with a threshold on IoU is perhaps the most popular metric for object detection. However, this metric can not capture all aspects of the nuScenes detection tasks, like velocity and attribute estimation. Further, it couples location, size, and orientation estimates. nuScenes proposed instead consolidating the different error types into a scalar score:

$$ \text{NDS} = \frac{1}{10} [5\text{mAP}+\sum_{\text{mTP}\in\mathbb{TP}} (1-\min(1, \text{mTP}))] . $$

BEVerse-Small-SingleFrame

Corruption NDS mAP mATE mASE mAOE mAVE mAAE
Clean 0.2682 0.1513 0.6631 0.4228 0.5406 1.3996 0.4483
Cam Crash 0.1305 0.0340 0.8028 0.6164 0.7475 1.2273 0.6978
Frame Lost 0.0822 0.0274 0.8755 0.7651 0.8674 1.1223 0.8107
Color Quant 0.1002 0.0495 0.8923 0.7228 0.8517 1.1570 0.7850
Motion Blur 0.0716 0.0370 0.9117 0.7927 0.8818 1.1616 0.8833
Brightness 0.1336 0.0724 0.8340 0.6499 0.8086 1.2874 0.7333
Low Light 0.0132 0.0041 0.9862 0.9356 1.0175 0.9964 0.9707
Fog 0.0910 0.0406 0.8894 0.7200 0.8700 1.0564 0.8140
Snow 0.0116 0.0066 0.9785 0.9385 1.0000 1.0000 1.0000

Experiment Log

Time: Fri Jan 27 18:03:02 2023

Camera Crash

Severity NDS mAP mATE mASE mAOE mAVE mAAE
Easy 0.1889 0.0569 0.7291 0.4955 0.6509 1.2742 0.5201
Moderate 0.1112 0.0175 0.8335 0.6378 0.7467 1.3031 0.7570
Hard 0.0915 0.0276 0.8457 0.7159 0.8450 1.1045 0.8163
Average 0.1305 0.0340 0.8028 0.6164 0.7475 1.2273 0.6978

Frame Lost

Severity NDS mAP mATE mASE mAOE mAVE mAAE
Easy 0.1962 0.0698 0.7196 0.4957 0.6518 1.3788 0.5197
Moderate 0.0504 0.0123 0.9070 0.7995 0.9504 0.9882 0.9123
Hard 0.0001 0.0002 1.0000 1.0000 1.0000 1.0000 1.0000
Average 0.0822 0.0274 0.8755 0.7651 0.8674 1.1223 0.8107

Color Quant

Severity NDS mAP mATE mASE mAOE mAVE mAAE
Easy 0.2100 0.1117 0.7461 0.5007 0.6772 1.3872 0.5339
Moderate 0.0837 0.0355 0.9130 0.7279 0.8779 1.0838 0.8211
Hard 0.0068 0.0015 1.0179 0.9398 1.0000 1.0000 1.0000
Average 0.1002 0.0495 0.8923 0.7228 0.8517 1.1570 0.7850

Motion Blur

Severity NDS mAP mATE mASE mAOE mAVE mAAE
Easy 0.1727 0.0921 0.7926 0.5722 0.7189 1.4848 0.6500
Moderate 0.0317 0.0150 0.9636 0.8684 0.9266 1.0000 1.0000
Hard 0.0104 0.0040 0.9788 0.9376 1.0000 1.0000 1.0000
Average 0.0716 0.0370 0.9117 0.7927 0.8818 1.1616 0.8833

Brightness

Severity NDS mAP mATE mASE mAOE mAVE mAAE
Easy 0.2129 0.1145 0.7360 0.5022 0.6704 1.5247 0.5351
Moderate 0.1025 0.0643 0.8700 0.7234 0.8729 1.1718 0.8306
Hard 0.0856 0.0386 0.8959 0.7241 0.8825 1.1658 0.8342
Average 0.1336 0.0724 0.8340 0.6499 0.8086 1.2874 0.7333

Low Light

Severity NDS mAP mATE mASE mAOE mAVE mAAE
Easy 0.0304 0.0093 0.9705 0.8700 1.0526 0.9892 0.9122
Moderate 0.0091 0.0031 0.9880 0.9369 1.0000 1.0000 1.0000
Hard 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Average 0.0233 0.0073 0.9770 0.8922 1.0342 0.9924 0.9416

Fog

Severity NDS mAP mATE mASE mAOE mAVE mAAE
Easy 0.1013 0.0569 0.8731 0.7200 0.8629 1.0581 0.8156
Moderate 0.0899 0.0385 0.8895 0.7201 0.8703 1.0551 0.8135
Hard 0.0817 0.0265 0.9056 0.7200 0.8769 1.0560 0.8129
Average 0.0910 0.0406 0.8894 0.7200 0.8700 1.0564 0.8140

Snow

Severity NDS mAP mATE mASE mAOE mAVE mAAE
Easy 0.0154 0.0133 0.9752 0.9373 1.0000 1.0000 1.0000
Moderate 0.0097 0.0031 0.9792 0.9392 1.0000 1.0000 1.0000
Hard 0.0097 0.0033 0.9810 0.9390 1.0000 1.0000 1.0000
Average 0.0116 0.0066 0.9785 0.9385 1.0000 1.0000 1.0000

References

@article{zhang2022beverse,
  title={Beverse: Unified perception and prediction in birds-eye-view for vision-centric autonomous driving},
  author={Zhang, Yunpeng and Zhu, Zheng and Zheng, Wenzhao and Huang, Junjie and Huang, Guan and Zhou, Jie and Lu, Jiwen},
  journal={arXiv preprint arXiv:2205.09743},
  year={2022}
}