-
Notifications
You must be signed in to change notification settings - Fork 48
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Implementing Bivariate Bicycle Codes using 2BGA as the parent via Hec…
…ke's Group Algebra (#399) Co-authored-by: Stefan Krastanov <[email protected]> Co-authored-by: Stefan Krastanov <[email protected]>
- Loading branch information
1 parent
40924b8
commit 5f2ef93
Showing
5 changed files
with
250 additions
and
4 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,173 @@ | ||
@testitem "ECC Bivaraite Bicycle as 2BGA" begin | ||
using Hecke | ||
using Hecke: group_algebra, GF, abelian_group, gens, one | ||
using QuantumClifford.ECC: two_block_group_algebra_codes, code_k, code_n | ||
|
||
@testset "Reproduce Table 3 bravyi2024high" begin | ||
# [[72, 12, 6]] | ||
l=6; m=6 | ||
GA = group_algebra(GF(2), abelian_group([l, m])) | ||
x, y = gens(GA) | ||
A = x^3 + y + y^2 | ||
B = y^3 + x + x^2 | ||
c = two_block_group_algebra_codes(A,B) | ||
@test code_n(c) == 72 && code_k(c) == 12 | ||
|
||
# [[90, 8, 10]] | ||
l=15; m=3 | ||
GA = group_algebra(GF(2), abelian_group([l, m])) | ||
x, y = gens(GA) | ||
A = x^9 + y + y^2 | ||
B = 1 + x^2 + x^7 | ||
c = two_block_group_algebra_codes(A,B) | ||
@test code_n(c) == 90 && code_k(c) == 8 | ||
|
||
# [[108, 8, 10]] | ||
l=9; m=6 | ||
GA = group_algebra(GF(2), abelian_group([l, m])) | ||
x, y = gens(GA) | ||
A = x^3 + y + y^2 | ||
B = y^3 + x + x^2 | ||
c = two_block_group_algebra_codes(A,B) | ||
@test code_n(c) == 108 && code_k(c) == 8 | ||
|
||
# [[144, 12, 12]] | ||
l=12; m=6 | ||
GA = group_algebra(GF(2), abelian_group([l, m])) | ||
x, y = gens(GA) | ||
A = x^3 + y + y^2 | ||
B = y^3 + x + x^2 | ||
c = two_block_group_algebra_codes(A,B) | ||
@test code_n(c) == 144 && code_k(c) == 12 | ||
|
||
# [[288, 12, 12]] | ||
l=12; m=12 | ||
GA = group_algebra(GF(2), abelian_group([l, m])) | ||
x, y = gens(GA) | ||
A = x^3 + y^2 + y^7 | ||
B = y^3 + x + x^2 | ||
c = two_block_group_algebra_codes(A,B) | ||
@test code_n(c) == 288 && code_k(c) == 12 | ||
|
||
# [[360, 12, ≤ 24]] | ||
l=30; m=6 | ||
GA = group_algebra(GF(2), abelian_group([l, m])) | ||
x, y = gens(GA) | ||
A = x^9 + y + y^2 | ||
B = y^3 + x^25 + x^26 | ||
c = two_block_group_algebra_codes(A,B) | ||
@test code_n(c) == 360 && code_k(c) == 12 | ||
|
||
# [[756, 16, ≤ 34]] | ||
l=21; m=18 | ||
GA = group_algebra(GF(2), abelian_group([l, m])) | ||
x, y = gens(GA) | ||
A = x^3 + y^10 + y^17 | ||
B = y^5 + x^3 + x^19 | ||
c = two_block_group_algebra_codes(A,B) | ||
@test code_n(c) == 756 && code_k(c) == 16 | ||
end | ||
|
||
@testset "Reproduce Table 1 berthusen2024toward" begin | ||
# [[72, 8, 6]] | ||
l=12; m=3 | ||
GA = group_algebra(GF(2), abelian_group([l, m])) | ||
x, y = gens(GA) | ||
A = x^9 + y + y^2 | ||
B = 1 + x + x^11 | ||
c = two_block_group_algebra_codes(A,B) | ||
@test code_n(c) == 72 && code_k(c) == 8 | ||
|
||
# [[90, 8, 6]] | ||
l=9; m=5 | ||
GA = group_algebra(GF(2), abelian_group([l, m])) | ||
x, y = gens(GA) | ||
A = x^8 + y^4 + y | ||
B = y^5 + x^8 + x^7 | ||
c = two_block_group_algebra_codes(A,B) | ||
@test code_n(c) == 90 && code_k(c) == 8 | ||
|
||
# [[120, 8, 8]] | ||
l=12; m=5 | ||
GA = group_algebra(GF(2), abelian_group([l, m])) | ||
x, y = gens(GA) | ||
A = x^10 + y^4 + y | ||
B = 1 + x + x^2 | ||
c = two_block_group_algebra_codes(A,B) | ||
@test code_n(c) == 120 && code_k(c) == 8 | ||
|
||
# [[150, 8, 8]] | ||
l=15; m=5 | ||
GA = group_algebra(GF(2), abelian_group([l, m])) | ||
x, y = gens(GA) | ||
A = x^5 + y^2 + y^3 | ||
B = y^2 + x^7 + x^6 | ||
c = two_block_group_algebra_codes(A,B) | ||
@test code_n(c) == 150 && code_k(c) == 8 | ||
|
||
# [[196, 12, 8]] | ||
l=14; m=7 | ||
GA = group_algebra(GF(2), abelian_group([l, m])) | ||
x, y = gens(GA) | ||
A = x^6 + y^5 + y^6 | ||
B = 1 + x^4 + x^13 | ||
c = two_block_group_algebra_codes(A,B) | ||
@test code_n(c) == 196 && code_k(c) == 12 | ||
end | ||
|
||
@testset "Reproduce Table 1 wang2024coprime" begin | ||
# [[54, 8, 6]] | ||
l=3; m=9 | ||
GA = group_algebra(GF(2), abelian_group([l, m])) | ||
x, y = gens(GA) | ||
A = 1 + y^2 + y^4 | ||
B = y^3 + x + x^2 | ||
c = two_block_group_algebra_codes(A,B) | ||
@test code_n(c) == 54 && code_k(c) == 8 | ||
|
||
# [[98, 6, 12]] | ||
l=7; m=7 | ||
GA = group_algebra(GF(2), abelian_group([l, m])) | ||
x, y = gens(GA) | ||
A = x^3 + y^5 + y^6 | ||
B = y^2 + x^3 + x^5 | ||
c = two_block_group_algebra_codes(A,B) | ||
@test code_n(c) == 98 && code_k(c) == 6 | ||
|
||
# [[126, 8, 10]] | ||
l=3; m=21 | ||
GA = group_algebra(GF(2), abelian_group([l, m])) | ||
x, y = gens(GA) | ||
A = 1 + y^2 + y^10 | ||
B = y^3 + x + x^2 | ||
c = two_block_group_algebra_codes(A,B) | ||
@test code_n(c) == 126 && code_k(c) == 8 | ||
|
||
# [[150, 16, 8]] | ||
l=5; m=15 | ||
GA = group_algebra(GF(2), abelian_group([l, m])) | ||
x, y = gens(GA) | ||
A = 1 + y^6 + y^8 | ||
B = y^5 + x + x^4 | ||
c = two_block_group_algebra_codes(A,B) | ||
@test code_n(c) == 150 && code_k(c) == 16 | ||
|
||
# [[162, 8, 14]] | ||
l=3; m=27 | ||
GA = group_algebra(GF(2), abelian_group([l, m])) | ||
x, y = gens(GA) | ||
A = 1 + y^10 + y^14 | ||
B = y^12 + x + x^2 | ||
c = two_block_group_algebra_codes(A,B) | ||
@test code_n(c) == 162 && code_k(c) == 8 | ||
|
||
# [[180, 8, 16]] | ||
l=6; m=15 | ||
GA = group_algebra(GF(2), abelian_group([l, m])) | ||
x, y = gens(GA) | ||
A = x^3 + y + y^2 | ||
B = y^6 + x^4 + x^5 | ||
c = two_block_group_algebra_codes(A,B) | ||
@test code_n(c) == 180 && code_k(c) == 8 | ||
end | ||
end |