Skip to content

Robust Ground Constrained LiDAR SLAM for Mobile Robot with Sparse-channel LiDAR

Notifications You must be signed in to change notification settings

ROBOT-WSC/RGC-SLAM

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 

Repository files navigation

RGC-SLAM:

Robust Ground Constrained SLAM for Mobile Robot With Sparse-Channel LiDAR

Shaocong Wang, Fengkui Cao, Ting Wang, Shiliang Shao, and Lianqing Liu

IEEE Transactions on Intelligent Vehicles

News

  • 13 Sept 2024: Code updata
  • 28 Aug 2024: Accepted by IEEE TIV!

Getting Started

Instructions

RGC-SLAM requires an input point cloud of type sensor_msgs::PointCloud2 with an optional IMU input of type sensor_msgs::Imu.

Dependencies

  • Ubuntu 18.04 or 20.04
  • ROS Melodic or Noetic (roscpp, std_msgs, sensor_msgs, geometry_msgs, pcl_ros)
  • C++ 14
  • OpenMP
  • Point Cloud Library
  • Eigen >=3.3.4
  • Ceres >=1.14

Compiling

Create a catkin workspace, clone the ground_msg and rgc_slam repository into the src folder, and compile via the catkin_tools package (or catkin_make if preferred):

mkdir ws && cd ws && mkdir src && catkin init && cd src
git clone https://github.com/ROBOT-WSC/RGC-SLAM.git
catkin_make

Execution

For your convenience, we provide example test data here (4 sequences, sequence1_to_4.zip). To run, first launch RGC-SLAM (with default point cloud and IMU topics) via:

roslaunch rgc_slam run.launch

In a separate terminal session, play back the downloaded bag:

rosbag play mynteye_stereo_velodyne_wheel_angle_GPS_2020-09-18-15-03-4#-playgroud.bag --clock

Citation

If you find RGC-SLAM is useful in your research or applications, please consider giving us a star 🌟 and citing it by the following BibTeX entry.

@ARTICLE{wang2024rgcslam,
  author={Wang, Shaocong and Cao, Fengkui and Wang, Ting and Shao, Shiliang and Liu, Lianqing},
  journal={IEEE Transactions on Intelligent Vehicles}, 
  title={Robust Ground Constrained SLAM for Mobile Robot With Sparse-Channel LiDAR}, 
  year={2024},
  volume={},
  number={},
  pages={1-12},
  keywords={Laser radar;Simultaneous localization and mapping;Feature extraction;Robots;Degradation;Point cloud compression;Odometry;SLAM;Mobile robot;Ground constraint;Degraded environment;Sparse-channel LiDAR},
  doi={10.1109/TIV.2024.3451137}}

Acknowledgements

We thank the authors of the FastGICP and A-LOAM open-source packages.

About

Robust Ground Constrained LiDAR SLAM for Mobile Robot with Sparse-channel LiDAR

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published