Skip to content

Commit

Permalink
differences for PR #5
Browse files Browse the repository at this point in the history
  • Loading branch information
actions-user committed Jan 1, 2024
1 parent 9625f83 commit 2f2b3cd
Show file tree
Hide file tree
Showing 7 changed files with 204 additions and 39 deletions.
3 changes: 3 additions & 0 deletions config.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -60,6 +60,9 @@ contact: '[email protected]'
# Order of episodes in your lesson
episodes:
- introduction.md
- profiling-introduction.md
- profiling-functions.md
- profiling-lines.md

# Information for Learners
learners:
Expand Down
41 changes: 39 additions & 2 deletions index.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,8 +2,45 @@
site: sandpaper::sandpaper_site
---

This is a new lesson built with [The Carpentries Workbench][workbench].
![Welcome to Performance Profiling & Optimisation (Python) Training!
](episodes/fig/pando-python-hex-sticker.png){
alt='Performance Profiling & Optimisation (Python) Training'
style='padding: 2%'}

The training curriculum for this course is designed for researchers that are writing Python and lack formal training. The curriculum covers how to assess where time is being spent during execution of a Python program, it also provides a high level understanding of how code executes and how this maps to the limiting factors of performance.

[workbench]: https://carpentries.github.io/sandpaper-docs
If you are now comfortable using Python, this course may be of interest to supplement and advance your programming knowledge. This course is particularly relevant if you are writing research code and desire greater confidence that your code is both performant and suitable for publication.

<!-- TODO: course duration? -->
<!-- TODO: confident code syllabus? -->


## Learning Objectives
<!-- Aim for 3-4 objectives for every 6 hours of training -->
<!-- SMART Objectives
- Specific
- Measureable
- Attainable (within the span of the course)
- Relevant
- Time-bound (implicitly the length of the course)
-->
<!-- Evaluation tool: https://web.cs.manchester.ac.uk/iloadvisor/ -->
After attending this training, participants will be able to:

- identify the most expensive functions and lines of code using `cprofile` and `line_profiler`.
- evaluate code to determine the limiting factors of it's performance.
- recognise and implement optimisations for common limiting factors of performance.

:::::::::::::::::::::::::::::::::::::::::: prereq

## Prerequisites

Before joining Performance Profiling & Optimisation (Python) Training, participants should be able to:

- implement basic algorithms in Python
- follow the control flow of Python code, and dry run the execution in their head or on paper.

See the [Research Computing Training Hub](https://sites.google.com/sheffield.ac.uk/research-training/research-training) for other courses to help with learning these skills.
<!-- TODO: could make a dedicated page (like https://carpentries.github.io/lesson-development-training/markdown-github-primer.html) that highlights specific courses/resources. -->

::::::::::::::::::::::::::::::::::::::::::::::::::
9 changes: 6 additions & 3 deletions md5sum.txt
Original file line number Diff line number Diff line change
@@ -1,11 +1,14 @@
"file" "checksum" "built" "date"
"CODE_OF_CONDUCT.md" "c93c83c630db2fe2462240bf72552548" "site/built/CODE_OF_CONDUCT.md" "2023-12-07"
"LICENSE.md" "b24ebbb41b14ca25cf6b8216dda83e5f" "site/built/LICENSE.md" "2023-12-07"
"config.yaml" "509085b79e6ec689b015216d87ddbeff" "site/built/config.yaml" "2023-12-08"
"index.md" "a02c9c785ed98ddd84fe3d34ddb12fcd" "site/built/index.md" "2023-12-08"
"config.yaml" "9086af5e5e979722dcad1ab925ec6412" "site/built/config.yaml" "2024-01-01"
"index.md" "df8ef5258ba527e8fc3ca82f97fa27d8" "site/built/index.md" "2024-01-01"
"links.md" "8184cf4149eafbf03ce8da8ff0778c14" "site/built/links.md" "2023-12-07"
"episodes/introduction.md" "6c55d31b41d322729fb3276f8d4371fc" "site/built/introduction.md" "2023-12-07"
"episodes/profiling-introduction.md" "2dbb9db1de2f82c16a27fc86076ca9f7" "site/built/profiling-introduction.md" "2024-01-01"
"episodes/profiling-functions.md" "6e3d4d42db22b5ea2d9a112c61940289" "site/built/profiling-functions.md" "2024-01-01"
"episodes/profiling-lines.md" "f21cb8b587a238657ac5bdf28df59e50" "site/built/profiling-lines.md" "2024-01-01"
"instructors/instructor-notes.md" "cae72b6712578d74a49fea7513099f8c" "site/built/instructor-notes.md" "2023-12-07"
"learners/reference.md" "1c7cc4e229304d9806a13f69ca1b8ba4" "site/built/reference.md" "2023-12-07"
"learners/setup.md" "61568b36c8b96363218c9736f6aee03a" "site/built/setup.md" "2023-12-07"
"learners/setup.md" "eda96a4aa0e52fe92f91868fb2ecd5c0" "site/built/setup.md" "2024-01-01"
"profiles/learner-profiles.md" "60b93493cf1da06dfd63255d73854461" "site/built/learner-profiles.md" "2023-12-07"
17 changes: 17 additions & 0 deletions profiling-functions.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,17 @@
---
title: "Function Level Profiling"
teaching: 0
exercises: 0
---

:::::::::::::::::::::::::::::::::::::: questions

- TODO

::::::::::::::::::::::::::::::::::::::::::::::::

::::::::::::::::::::::::::::::::::::: objectives

- TODO

::::::::::::::::::::::::::::::::::::::::::::::::
111 changes: 111 additions & 0 deletions profiling-introduction.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,111 @@
---
title: "Introduction to Profiling"
teaching: 0
exercises: 0
---

:::::::::::::::::::::::::::::::::::::: questions

- TODO

::::::::::::::::::::::::::::::::::::::::::::::::

::::::::::::::::::::::::::::::::::::: objectives

- explain the benefits of profiling code and different types of profiler
- identify the appropriate Python profiler for a given scenario
- explain how to select an appropriate test case for profiling and why

::::::::::::::::::::::::::::::::::::::::::::::::


## Introduction

<!-- Profiling is (what) -->
<!-- It can be used for (where) -->
<!-- This allows enables faster/more (why)-->
<!-- It can be difficult to know without profiling, surprise speedup (why2) -->
<!-- Increasingly, concern for green/eco compute and or cloud costs (why3) -->

## Types of Profiler

There are multiple approaches to profiling, most programming languages have one or more tools available covering these approaches.
Whilst these tools differ, their core functionality can be grouped into four categories.

### Manual Profiling

Similar to using `print()` for debugging, manually timing sections of code can provide a rudimentary form of profiling.

```Python
import time

t_a = time.monotonic()
# A: Do something
t_b = time.monotonic()
# B: Do something else
t_c = time.monotonic()
# C: Do another thing
t_d = time.monotonic()

mainTimer_stop = time.monotonic()
print(f"A: {t_b - t_a} seconds")
print(f"B: {t_c - t_b} seconds")
print(f"C: {t_d - t_c} seconds")
```

*Above is only one example of how you could manually profile your Python code, there are many similar techniques.*

Whilst this can be appropriate for profiling narrow sections of code, it becomes increasingly impractical as a project grows in size and complexity.
Furthermore, it's also unproductive to be routinely adding and removing these small changes if they interfere with the required outputs of a project.

::::::::::::::::::::::::::::::::::::: callout

You may have previously used [`timeit`](https://docs.python.org/3/library/timeit.html) for timing Python code.

This package returns the **total runtime** of an isolated block of code, without providing a more granular timing breakdown.
Therefore, it is better described as a tool for **benchmarking**.

:::::::::::::::::::::::::::::::::::::::::::::

### Function-Level Profiling
### Line-Level Profiling
### Hardware Metric Profiling
<!-- "Hardware" metric profilers also exist, but atypical for high-level languages like Python, so won't be covering. -->

##

<!-- Todo, how to frame data-set selection -->






::::::::::::::::::::::::::::::::::::: discussion

# Exercise (5 minutes)

Think about a project where you've been working with Python.
Do you know where the time during execution is being spent?

Write a short plan of the approach you would take to investigate and confirm
where the majority of time is being spent during it's execution.

<!-- TODO should they share this anywhere, should it be discussed within the group? -->

::::::::::::::::::::::::::::::::::::::::::::::::

::::::::::::::::::::::::::::::::::::: hint

- What tools and techniques would be required?
- Is there a clear priority to these approaches?
- Which test-case/s would be appropriate?

::::::::::::::::::::::::::::::::::::::::::::::::


::::::::::::::::::::::::::::::::::::: keypoints

todo summarise lessons learned

::::::::::::::::::::::::::::::::::::::::::::::::
17 changes: 17 additions & 0 deletions profiling-lines.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,17 @@
---
title: "Line Level Profiling"
teaching: 0
exercises: 0
---

:::::::::::::::::::::::::::::::::::::: questions

- TODO

::::::::::::::::::::::::::::::::::::::::::::::::

::::::::::::::::::::::::::::::::::::: objectives

- TODO

::::::::::::::::::::::::::::::::::::::::::::::::
45 changes: 11 additions & 34 deletions setup.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,53 +2,30 @@
title: Setup
---

FIXME: Setup instructions live in this document. Please specify the tools and
the data sets the Learner needs to have installed.

<!--
## Data Sets
<!--
FIXME: place any data you want learners to use in `episodes/data` and then use
a relative link ( [data zip file](data/lesson-data.zip) ) to provide a
link to it, replacing the example.com link.
-->
Download the [data zip file](https://example.com/FIXME) and unzip it to your Desktop
-->

## Software Setup

::::::::::::::::::::::::::::::::::::::: discussion

### Details

Setup for different systems can be presented in dropdown menus via a `solution`
tag. They will join to this discussion block, so you can give a general overview
of the software used in this lesson here and fill out the individual operating
systems (and potentially add more, e.g. online setup) in the solutions blocks.

:::::::::::::::::::::::::::::::::::::::::::::::::::

:::::::::::::::: solution

### Windows

Use PuTTY
This course uses Python and was developed using Python 3.11, therefore it is recommended that you have a Python 3.11 or newer environment.

:::::::::::::::::::::::::
<!-- Todo suggest using a venv?-->

:::::::::::::::: solution

### MacOS

Use Terminal.app

:::::::::::::::::::::::::


:::::::::::::::: solution

### Linux

Use Terminal

:::::::::::::::::::::::::
The non-core Python packages required by the course are `snakeviz` and `line_profiler` and can be installed via `pip`.

```input
pip install snakeviz line_profiler[all]
```

:::::::::::::::::::::::::::::::::::::::::::::::::::

0 comments on commit 2f2b3cd

Please sign in to comment.