Skip to content

Commit

Permalink
Merge pull request #15 from RapidAI/update_readme
Browse files Browse the repository at this point in the history
chore: add gif preview
  • Loading branch information
Joker1212 authored Oct 23, 2024
2 parents b27b918 + 41e542f commit ea0f90b
Showing 1 changed file with 7 additions and 2 deletions.
9 changes: 7 additions & 2 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -33,15 +33,20 @@ slanet_plus是paddlex内置的SLANet升级版模型,准确率有大幅提升

模型下载地址为:[百度网盘](https://pan.baidu.com/s/1PI9fksW6F6kQfJhwUkewWg?pwd=p29g) | [Google Drive](https://drive.google.com/drive/folders/1DAPWSN2zGQ-ED_Pz7RaJGTjfkN2-Mvsf?usp=sharing) |

### [TableStructureRec](https://github.com/RapidAI/TableStructureRec)关系
###效果展示
<div align="center">
<img src="https://github.com/RapidAI/RapidTable/releases/download/assets/preview.gif" alt="Demo" width="100%" height="100%">
</div>

### [TableStructureRec](https://github.com/RapidAI/TableStructureRec) 关系

TableStructureRec库是一个表格识别算法的集合库,当前有`wired_table_rec`有线表格识别算法和`lineless_table_rec`无线表格识别算法的推理包。

RapidTable是整理自PP-Structure中表格识别部分而来。由于PP-Structure较早,这个库命名就成了`rapid_table`

总之,RapidTable和TabelStructureRec都是表格识别的仓库。大家可以都试试,哪个好用用哪个。由于每个算法都不太同,暂时不打算做统一处理。

关于三种表格识别算法的比较,可参见文档:[docs](https://rapidai.github.io/TableStructureRec/docs/blog/table_rec_evaluate/)
关于表格识别算法的比较,可参见[TableStructureRec测评](https://github.com/RapidAI/TableStructureRec#指标结果)

### 安装

Expand Down

0 comments on commit ea0f90b

Please sign in to comment.