Skip to content

RyanPham19092002/HCMUT-monitoring-system-bully-actions-in-school-environment_part2

Repository files navigation

YOWOv2: A Stronger yet Efficient Multi-level Detection Framework for Real-time Spatio-temporal Action Detection

English | 简体中文

Overview of YOWOv2

image

Requirements

  • We recommend you to use Anaconda to create a conda environment:
conda create -n yowo python=3.6
  • Then, activate the environment:
conda activate yowo
  • Requirements:
pip install -r requirements.txt 

Visualization

image image image

image image image

Dataset

UCF101-24:

You can download UCF24 from the following links:

  • Google drive

Link: https://drive.google.com/file/d/1Dwh90pRi7uGkH5qLRjQIFiEmMJrAog5J/view?usp=sharing

  • BaiduYun Disk

Link: https://pan.baidu.com/s/11GZvbV0oAzBhNDVKXsVGKg

Password: hmu6

AVA

You can use instructions from here to prepare AVA dataset.

Experiment

  • UCF101-24
Model Clip GFLOPs Params F-mAP V-mAP FPS Weight
YOWOv2-Nano 16 1.3 3.5 M 78.8 48.0 42 ckpt
YOWOv2-Tiny 16 2.9 10.9 M 80.5 51.3 50 ckpt
YOWOv2-Medium 16 12.0 52.0 M 83.1 50.7 42 ckpt
YOWOv2-Large 16 53.6 109.7 M 85.2 52.0 30 ckpt
YOWOv2-Nano 32 2.0 3.5 M 79.4 49.0 42 ckpt
YOWOv2-Tiny 32 4.5 10.9 M 83.0 51.2 50 ckpt
YOWOv2-Medium 32 12.7 52.0 M 83.7 52.5 40 ckpt
YOWOv2-Large 32 91.9 109.7 M 87.0 52.8 22 ckpt

All FLOPs are measured with a video clip with 16 or 32 frames (224×224). The FPS is measured with batch size 1 on a 3090 GPU from the model inference to the NMS operation.

Qualitative results on UCF101-24 image

  • AVA v2.2
Model Clip mAP FPS weight
YOWOv2-Nano 16 12.6 40 ckpt
YOWOv2-Tiny 16 14.9 49 ckpt
YOWOv2-Medium 16 18.4 41 ckpt
YOWOv2-Large 16 20.2 29 ckpt
YOWOv2-Nano 32 12.7 40 ckpt
YOWOv2-Tiny 32 15.6 49 ckpt
YOWOv2-Medium 32 18.4 40 ckpt
YOWOv2-Large 32 21.7 22 ckpt

Qualitative results on AVA image

Train YOWOv2

  • UCF101-24

For example:

python train.py --cuda -d ucf24 --root path/to/dataset -v yowo_v2_nano --num_workers 4 --eval_epoch 1 --max_epoch 8 --lr_epoch 2 3 4 5 -lr 0.0001 -ldr 0.5 -bs 8 -accu 16 -K 16

or you can just run the script:

sh train_ucf.sh
  • AVA
python train.py --cuda -d ava_v2.2 --root path/to/dataset -v yowo_v2_nano --num_workers 4 --eval_epoch 1 --max_epoch 10 --lr_epoch 3 4 5 6 -lr 0.0001 -ldr 0.5 -bs 8 -accu 16 -K 16 --eval

or you can just run the script:

sh train_ava.sh

If you have multiple GPUs, you can launch DDP to train the YOWOv2, for example:

python train.py --cuda -dist -d ava_v2.2 --root path/to/dataset -v yowo_v2_nano --num_workers 4 --eval_epoch 1 --max_epoch 10 --lr_epoch 3 4 5 6 -lr 0.0001 -ldr 0.5 -bs 8 -accu 16 -K 16 --eval

However, I have not multiple GPUs, so I am not sure if there are any bugs, or if the given performance can be reproduced using DDP.

Test YOWOv2

  • UCF101-24 For example:
python test.py --cuda -d ucf24 -v yowo_v2_nano --weight path/to/weight -size 224 --show
  • AVA For example:
python test.py --cuda -d ava_v2.2 -v yowo_v2_nano --weight path/to/weight -size 224 --show

Test YOWOv2 on AVA video

For example:

python test_video_ava.py --cuda -d ava_v2.2 -v yowo_v2_nano --weight path/to/weight --video path/to/video --show

Note that you can set path/to/video to other videos in your local device, not AVA videos.

Evaluate YOWOv2

  • UCF101-24 For example:
# Frame mAP
python eval.py \
        --cuda \
        -d ucf24 \
        -v yowo_v2_nano \
        -bs 16 \
        -size 224 \
        --weight path/to/weight \
        --cal_frame_mAP \
# Video mAP
python eval.py \
        --cuda \
        -d ucf24 \
        -v yowo_v2_nano \
        -bs 16 \
        -size 224 \
        --weight path/to/weight \
        --cal_video_mAP \
  • AVA

Run the following command to calculate frame [email protected] IoU:

python eval.py \
        --cuda \
        -d ava_v2.2 \
        -v yowo_v2_nano \
        -bs 16 \
        --weight path/to/weight

Demo

# run demo
python demo.py --cuda -d ucf24 -v yowo_v2_nano -size 224 --weight path/to/weight --video path/to/video --show
                      -d ava_v2.2

Qualitative results in real scenarios image

References

If you are using our code, please consider citing our paper.

@article{yang2023yowov2,
  title={YOWOv2: A Stronger yet Efficient Multi-level Detection Framework for Real-time Spatio-temporal Action Detection},
  author={Yang, Jianhua and Kun, Dai},
  journal={arXiv preprint arXiv:2302.06848},
  year={2023}
}

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published