-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathalign_genome.py
435 lines (342 loc) · 19.6 KB
/
align_genome.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
import luigi
import os
import urllib.request
import shutil
from common import run_command, get_path, get_path_no_ext
from config import reference_genome, no_threads, mem_per_thread
import socket
class MergeFastq(luigi.Task):
"""Class responsible for merging the files in case the sequencing output contains of multiple R1 and R2 files."""
resources = {"io": 1, "cores": 1}
"""Resources used by the task."""
working_dir = luigi.Parameter()
"""Working directory of the task."""
file_name_1 = luigi.Parameter()
"""Name of the file containing R1 reads."""
file_name_2 = luigi.Parameter()
"""Name of the file containing R2 reads."""
sample_name = luigi.Parameter()
"""Name of the sample."""
def output(self):
return [luigi.LocalTarget(self.working_dir+"/pipeline/"+self.sample_name+"/"+self.sample_name+"_R1.fastq"),
luigi.LocalTarget(self.working_dir+"/pipeline/"+self.sample_name+"/"+self.sample_name+"_R2.fastq")]
def run(self):
dirpath_main = self.working_dir+"/pipeline/"
if os.path.exists(dirpath_main) and os.path.isdir(dirpath_main):
pass
else:
os.makedirs(os.path.dirname(dirpath_main))
dirpath = self.working_dir+"/pipeline/%s/" % self.sample_name
if os.path.exists(dirpath) and os.path.isdir(dirpath):
shutil.rmtree(dirpath)
os.makedirs(os.path.dirname(dirpath))
if(";" in self.file_name_1):
files = " ".join(self.file_name_1.split(";"))
if(".gz" in self.file_name_1):
command_to_use = "zcat"
else:
command_to_use = "cat"
run_command("%s %s > %s" % (command_to_use, files, self.working_dir+"/pipeline/"+self.sample_name+"/"+self.sample_name+"_R1.fastq"))
else:
if(".gz" in self.file_name_1):
run_command("gunzip -c %s > %s" % (self.file_name_1, self.working_dir+"/pipeline/"+self.sample_name+"/"+self.sample_name+"_R1.fastq"))
else:
run_command("cp %s %s" % (self.file_name_1, self.working_dir+"/pipeline/"+self.sample_name+"/"+self.sample_name+"_R1.fastq"))
if(";" in self.file_name_2):
files = " ".join(self.file_name_2.split(";"))
if(".gz" in self.file_name_2):
command_to_use = "zcat"
else:
command_to_use = "cat"
run_command("%s %s > %s" % (command_to_use, files, self.working_dir+"/pipeline/"+self.sample_name+"/"+self.sample_name+"_R2.fastq"))
else:
if(".gz" in self.file_name_2):
run_command("gunzip -c %s > %s" % (self.file_name_2, self.working_dir+"/pipeline/"+self.sample_name+"/"+self.sample_name+"_R2.fastq"))
else:
run_command("cp %s %s" % (self.file_name_2, self.working_dir+"/pipeline/"+self.sample_name+"/"+self.sample_name+"_R2.fastq"))
class QCAnalysis(luigi.Task):
"""Class responsible for doing quality control on the merged files."""
resources = {"io": 1, "cores": 1}
"""Resources used by the task."""
working_dir = luigi.Parameter()
"""Working directory of the task."""
file_name_1 = luigi.Parameter()
"""Name of the file containing R1 reads."""
file_name_2 = luigi.Parameter()
"""Name of the file containing R2 reads."""
sample_name = luigi.Parameter()
"""Name of the sample."""
def requires(self):
return MergeFastq(working_dir=self.working_dir, file_name_1=self.file_name_1, file_name_2=self.file_name_2, sample_name=self.sample_name)
def output(self):
return [luigi.LocalTarget(self.working_dir+"/pipeline/"+self.sample_name+"/"+self.sample_name+'_R1_fastqc.html'),
luigi.LocalTarget(self.working_dir+"/pipeline/"+self.sample_name+"/"+self.sample_name+'_R1_fastqc.html')]
def run(self):
self.file_name_1 = self.input()[0].path
self.file_name_2 = self.input()[1].path
run_command("fastqc -f fastq -o %s %s" % (self.working_dir+"/pipeline/"+self.sample_name+"/", self.file_name_1))
run_command("fastqc -f fastq -o %s %s" % (self.working_dir+"/pipeline/"+self.sample_name+"/", self.file_name_2))
class AlignGenome(luigi.Task):
"""Class responsible for aligning the sample to reference genome."""
resources = {"cores": no_threads}
"""Resources used by the task."""
working_dir = luigi.Parameter()
"""Working directory of the task."""
file_name_1 = luigi.Parameter()
"""Name of the file containing R1 reads."""
file_name_2 = luigi.Parameter()
"""Name of the file containing R2 reads."""
sample_name = luigi.Parameter()
"""Name of the sample."""
def requires(self):
return QCAnalysis(working_dir=self.working_dir, file_name_1=self.file_name_1, file_name_2=self.file_name_2, sample_name=self.sample_name)
def output(self):
return luigi.LocalTarget(self.working_dir+"/pipeline/"+self.sample_name+'/'+self.sample_name+'.sam')
def run(self):
command = "bwa mem -v 1 -t %s -B 4 -O 6 -E 1 -M -R \"@RG\\tID:SRR\\tLB:LIB_1\\tSM:SAMPLE_1\\tPL:ILLUMINA\" %s %s %s > %s" % \
(no_threads, reference_genome, self.working_dir+"/pipeline/"+self.sample_name+"/"+self.sample_name+"_R1.fastq", self.working_dir+"/pipeline/"+self.sample_name+"/"+self.sample_name+"_R2.fastq", self.working_dir+"/pipeline/"+self.sample_name+'/'+self.sample_name+'.sam')
run_command(command)
class ConvertToBam(luigi.Task):
"""Class responsible for converting the aligned sample to bam file format."""
resources = {"cores": no_threads}
"""Resources used by the task."""
working_dir = luigi.Parameter()
"""Working directory of the task."""
file_name_1 = luigi.Parameter()
"""Name of the file containing R1 reads."""
file_name_2 = luigi.Parameter()
"""Name of the file containing R2 reads."""
sample_name = luigi.Parameter()
"""Name of the sample."""
def requires(self):
return AlignGenome(working_dir=self.working_dir, file_name_1=self.file_name_1, file_name_2=self.file_name_2, sample_name=self.sample_name)
def output(self):
return luigi.LocalTarget(get_path_no_ext(self.input().path)+".bam")
def run(self):
full_path_output = get_path_no_ext(self.input().path)+".bam"
run_command("samtools view -S -b -o %s -@ %s %s" % (full_path_output, no_threads, self.input().path,))
class SortBam(luigi.Task):
"""Class responsible for sorting the bam file."""
resources = {"io": 1, "cores": no_threads}
"""Resources used by the task."""
working_dir = luigi.Parameter()
"""Working directory of the task."""
file_name_1 = luigi.Parameter()
"""Name of the file containing R1 reads."""
file_name_2 = luigi.Parameter()
"""Name of the file containing R2 reads."""
sample_name = luigi.Parameter()
"""Name of the sample."""
def requires(self):
return ConvertToBam(working_dir=self.working_dir, file_name_1=self.file_name_1, file_name_2=self.file_name_2, sample_name=self.sample_name)
def output(self):
return luigi.LocalTarget(get_path_no_ext(self.input().path)+"_sorted.bam")
def run(self):
full_path_output = get_path_no_ext(self.input().path)+"_sorted.bam"
run_command("samtools sort -o %s -T %s -@ %s -m %s %s" % (full_path_output, self.input().path, no_threads, mem_per_thread, self.input().path))
class IndexBam(luigi.Task):
"""Class responsible for indexing the sorted bam file."""
resources = {"cores": 1}
"""Resources used by the task."""
working_dir = luigi.Parameter()
"""Working directory of the task."""
file_name_1 = luigi.Parameter()
"""Name of the file containing R1 reads."""
file_name_2 = luigi.Parameter()
"""Name of the file containing R2 reads."""
sample_name = luigi.Parameter()
"""Name of the sample."""
def requires(self):
return SortBam(working_dir=self.working_dir, file_name_1=self.file_name_1, file_name_2=self.file_name_2, sample_name=self.sample_name)
def output(self):
return luigi.LocalTarget(self.input().path+".bai")
def run(self):
run_command("samtools index -@ %s %s " % (no_threads, self.input().path))
class MarkDuplicates(luigi.Task):
"""Class responsible for marking duplicates using bammarkduplicates. Indexes the output as well."""
resources = {"cores": 1}
"""Resources used by the task."""
working_dir = luigi.Parameter()
"""Working directory of the task."""
file_name_1 = luigi.Parameter()
"""Name of the file containing R1 reads."""
file_name_2 = luigi.Parameter()
"""Name of the file containing R2 reads."""
sample_name = luigi.Parameter()
"""Name of the sample."""
def requires(self):
return IndexBam(working_dir=self.working_dir, file_name_1=self.file_name_1, file_name_2=self.file_name_2, sample_name=self.sample_name)
def output(self):
return luigi.LocalTarget(get_path_no_ext(self.input().path, 2)+"_dp.bam")
def run(self):
input_file = get_path_no_ext(self.input().path, 2)+".bam"
output_file = get_path_no_ext(self.input().path, 2)+"_dp.bam"
run_command("bammarkduplicates I=%s O=%s index=1 rmdup=1" % (input_file, output_file))
run_command("samtools index -@ %s %s " % (no_threads, output_file))
class BaseRecalibrator(luigi.Task):
"""Class responsible for base recalibration using gatk."""
resources = {"cores": 1}
"""Resources used by the task."""
working_dir = luigi.Parameter()
"""Working directory of the task."""
file_name_1 = luigi.Parameter()
"""Name of the file containing R1 reads."""
file_name_2 = luigi.Parameter()
"""Name of the file containing R2 reads."""
sample_name = luigi.Parameter()
"""Name of the sample."""
known_sites = "/tools/ALL_20141222.dbSNP142_human_GRCh38.snps.vcf.gz"
def requires(self):
return MarkDuplicates(working_dir=self.working_dir, file_name_1=self.file_name_1, file_name_2=self.file_name_2, sample_name=self.sample_name)
def output(self):
return luigi.LocalTarget(get_path_no_ext(self.input().path)+".recal_table")
def run(self):
input_file = get_path_no_ext(self.input().path)+".bam"
recal_table = get_path_no_ext(input_file)+".recal_table"
run_command("gatk BaseRecalibrator -R %s -O %s -I %s -known-sites %s" % (reference_genome, recal_table, input_file, self.known_sites))
class ApplyBQSR(luigi.Task):
"""Class responsible for applying BQSR (Base Quality Score recalibration) using gatk."""
resources = {"cores": 1}
"""Resources used by the task."""
working_dir = luigi.Parameter()
"""Working directory of the task."""
file_name_1 = luigi.Parameter()
"""Name of the file containing R1 reads."""
file_name_2 = luigi.Parameter()
"""Name of the file containing R2 reads."""
sample_name = luigi.Parameter()
"""Name of the sample."""
def requires(self):
return BaseRecalibrator(working_dir=self.working_dir, file_name_1=self.file_name_1, file_name_2=self.file_name_2, sample_name=self.sample_name)
def output(self):
return luigi.LocalTarget(get_path_no_ext(self.input().path)+"_final.bam")
def run(self):
recal_table = self.input().path
input_file = get_path_no_ext(recal_table)+".bam"
output_file = get_path_no_ext(recal_table)+"_final.bam"
run_command("gatk ApplyBQSR -R %s -O %s -I %s -bqsr-recal-file %s" % (reference_genome, output_file, input_file, recal_table))
class SortFinal(luigi.Task):
"""Class responsible for final sorting."""
resources = {"io": 1, "cores": no_threads}
"""Resources used by the task."""
working_dir = luigi.Parameter()
"""Working directory of the task."""
file_name_1 = luigi.Parameter()
"""Name of the file containing R1 reads."""
file_name_2 = luigi.Parameter()
"""Name of the file containing R2 reads."""
sample_name = luigi.Parameter()
"""Name of the sample."""
train_1000g = luigi.BoolParameter(default=False)
"""Information whether the current task is part of 1000G benchmarking pipeline."""
def requires(self):
if(self.train_1000g):
return Get1000G(working_dir=self.working_dir)
else:
return ApplyBQSR(working_dir=self.working_dir, file_name_1=self.file_name_1, file_name_2=self.file_name_2, sample_name=self.sample_name)
def output(self):
if(self.train_1000g):
return luigi.LocalTarget((self.working_dir+"/pipeline/%s/%s" % (self.sample_name, self.sample_name))+"_sorted.bam")
else:
return luigi.LocalTarget(get_path_no_ext(self.input().path)+"_sorted.bam")
def run(self):
if(self.train_1000g):
input_file = self.working_dir+"/pipeline/%s/%s.bam" % (self.sample_name, self.sample_name)
output_file = self.working_dir+"/pipeline/%s/%s_sorted.bam" % (self.sample_name, self.sample_name)
else:
input_file = self.input().path
output_file = get_path_no_ext(self.input().path)+"_sorted.bam"
run_command("samtools sort -o %s -T %s -@ %s -m %s %s" % (output_file, get_path(input_file), no_threads, mem_per_thread, input_file))
class IndexFinal(luigi.Task):
"""Class responsible for final indexing."""
resources = {"cores": no_threads}
"""Resources used by the task."""
working_dir = luigi.Parameter()
"""Working directory of the task."""
file_name_1 = luigi.Parameter()
"""Name of the file containing R1 reads."""
file_name_2 = luigi.Parameter()
"""Name of the file containing R2 reads."""
sample_name = luigi.Parameter()
"""Name of the sample."""
train_1000g = luigi.BoolParameter(default=False)
"""Information whether the current task is part of 1000G benchmarking pipeline."""
def requires(self):
return SortFinal(working_dir=self.working_dir, file_name_1=self.file_name_1, file_name_2=self.file_name_2, sample_name=self.sample_name, train_1000g=self.train_1000g)
def output(self):
return luigi.LocalTarget(get_path_no_ext(self.input().path)+".bam.bai")
def run(self):
if(self.train_1000g):
input_file = self.working_dir+"/pipeline/"+self.sample_name+"/"+self.sample_name+"_sorted.bam"
else:
input_file = self.input().path
run_command("samtools index -@ %s %s" % (no_threads, input_file))
class Get1000G(luigi.Task):
"""Class responsible for getting 9 high-quality NYGC from the ftp servers. Because of the FTP server connection issues, it is done sequentially."""
resources = {"cores": no_threads}
"""Resources used by the task."""
working_dir = luigi.Parameter()
"""Working directory of the task."""
ftp_link = "ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/hgsv_sv_discovery/data"
samples_ftp = {"HG00512": ftp_link+"/CHS/HG00512/high_cov_alignment/HG00512.alt_bwamem_GRCh38DH.20150715.CHS.high_coverage.cram",
"HG00513": ftp_link+"/CHS/HG00513/high_cov_alignment/HG00513.alt_bwamem_GRCh38DH.20150715.CHS.high_coverage.cram",
"HG00514": ftp_link+"/CHS/HG00514/high_cov_alignment/HG00514.alt_bwamem_GRCh38DH.20150715.CHS.high_coverage.cram",
"HG00731": ftp_link+"/PUR/HG00731/high_cov_alignment/HG00731.alt_bwamem_GRCh38DH.20150715.PUR.high_coverage.cram",
"HG00732": ftp_link+"/PUR/HG00732/high_cov_alignment/HG00732.alt_bwamem_GRCh38DH.20150715.PUR.high_coverage.cram",
"HG00733": ftp_link+"/PUR/HG00733/high_cov_alignment/HG00733.alt_bwamem_GRCh38DH.20150715.PUR.high_coverage.cram",
"NA19238": ftp_link+"/YRI/NA19238/high_cov_alignment/NA19238.alt_bwamem_GRCh38DH.20150715.YRI.high_coverage.cram",
"NA19239": ftp_link+"/YRI/NA19239/high_cov_alignment/NA19239.alt_bwamem_GRCh38DH.20150715.YRI.high_coverage.cram",
"NA19240": ftp_link+"/YRI/NA19240/high_cov_alignment/NA19240.alt_bwamem_GRCh38DH.20150715.YRI.high_coverage.cram"
}
def requires(self):
return []
def output(self):
return [luigi.LocalTarget(self.working_dir+"/pipeline/%s/%s.bam" % (sample, sample)) for sample in self.samples_ftp]
def run(self):
for sample, cram_ftp_link in self.samples_ftp.items():
dirpath = self.working_dir+"/pipeline/%s/" % sample
if not(os.path.exists(dirpath) and os.path.isdir(dirpath)):
os.makedirs(os.path.dirname(dirpath))
cram_file = dirpath+sample+".cram"
bam_file = dirpath+sample+".bam"
if not(os.path.isfile(cram_file)):
socket.setdefaulttimeout(3600)
urllib.request.urlretrieve(cram_ftp_link, cram_file)
if not(os.path.isfile(bam_file)):
run_command("samtools view -b -T %s -o %s -@ %s %s" % (reference_genome, bam_file, no_threads, cram_file))
class PerformAlignment(luigi.Task):
"""Class ending the alignment step, cleaning up the intermediate files, leaving only final, sorted and indexed alignemnt file."""
resources = {"io": 1, "cores": 1}
"""Resources used by the task."""
working_dir = luigi.Parameter()
"""Working directory of the task."""
file_name_1 = luigi.Parameter(default=None)
"""Name of the file containing R1 reads."""
file_name_2 = luigi.Parameter(default=None)
"""Name of the file containing R2 reads."""
sample_name = luigi.Parameter()
"""Name of the sample."""
train_1000g = luigi.BoolParameter(default=False)
"""Information whether the current task is part of 1000G benchmarking pipeline."""
def output(self):
return [luigi.LocalTarget(self.working_dir+"/pipeline/"+self.sample_name+"/"+self.sample_name+"_preprocessed.bam"), luigi.LocalTarget(self.working_dir+"/pipeline/"+self.sample_name+"/"+self.sample_name+"_preprocessed.bam.bai")]
def run(self):
if(self.train_1000g):
os.rename(self.working_dir+"/pipeline/"+self.sample_name+"/"+self.sample_name+"_sorted.bam", self.working_dir+"/pipeline/"+self.sample_name+"/"+self.sample_name+"_preprocessed.bam")
os.rename(self.working_dir+"/pipeline/"+self.sample_name+"/"+self.sample_name+"_sorted.bam.bai", self.working_dir+"/pipeline/"+self.sample_name+"/"+self.sample_name+"_preprocessed.bam.bai")
else:
os.remove(self.working_dir+"/pipeline/"+self.sample_name+"/"+self.sample_name+".sam")
os.remove(self.working_dir+"/pipeline/"+self.sample_name+"/"+self.sample_name+".bam")
os.remove(self.working_dir+"/pipeline/"+self.sample_name+"/"+self.sample_name+"_sorted.bam")
os.remove(self.working_dir+"/pipeline/"+self.sample_name+"/"+self.sample_name+"_sorted.bam.bai")
os.remove(self.working_dir+"/pipeline/"+self.sample_name+"/"+self.sample_name+"_sorted_dp.bam")
os.remove(self.working_dir+"/pipeline/"+self.sample_name+"/"+self.sample_name+"_sorted_dp.bam.bai")
os.remove(self.working_dir+"/pipeline/"+self.sample_name+"/"+self.sample_name+"_sorted_dp.recal_table")
os.remove(self.working_dir+"/pipeline/"+self.sample_name+"/"+self.sample_name+"_sorted_dp_final.bam")
os.remove(self.working_dir+"/pipeline/"+self.sample_name+"/"+self.sample_name+"_sorted_dp_final.bai")
os.rename(self.working_dir+"/pipeline/"+self.sample_name+"/"+self.sample_name+"_sorted_dp_final_sorted.bam", self.working_dir+"/pipeline/"+self.sample_name+"/"+self.sample_name+"_preprocessed.bam")
os.rename(self.working_dir+"/pipeline/"+self.sample_name+"/"+self.sample_name+"_sorted_dp_final_sorted.bam.bai", self.working_dir+"/pipeline/"+self.sample_name+"/"+self.sample_name+"_preprocessed.bam.bai")
def requires(self):
return IndexFinal(working_dir=self.working_dir, file_name_1=self.file_name_1, file_name_2=self.file_name_2, sample_name=self.sample_name, train_1000g=self.train_1000g)
if __name__ == '__main__':
luigi.run(workers)