-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_hicdiffusion.py
61 lines (49 loc) · 2.37 KB
/
test_hicdiffusion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import datasets
import lightning.pytorch as pl
from hicdiffusion_model import HiCDiffusion
from lightning.pytorch.callbacks import ModelSummary
import os
import shutil
from lightning.pytorch.loggers import WandbLogger
import time
import argparse
def main(val_chr, test_chr, model_ckpt, hic_filename="", model_ed=None):
if(hic_filename != ""):
filename_prefix = "_"+hic_filename
else:
filename_prefix = ""
pl.seed_everything(1996)
batch_size = 16
test_model_folder = "models/nhicdiffusion%s_test_%s_val_%s/predictions_test" % (filename_prefix, test_chr, val_chr)
genomic_data_module = datasets.GenomicDataModule("GRCh38_full_analysis_set_plus_decoy_hla.fa", "exclude_regions.bed", 500_000, batch_size, [val_chr], [test_chr], hic_filename)
if(model_ed is not None):
model = HiCDiffusion.load_from_checkpoint(model_ckpt, encoder_decoder_model=model_ed)
else:
model = HiCDiffusion.load_from_checkpoint(model_ckpt)
logger = WandbLogger(project=f"XDNHiCDiffusionTest{filename_prefix}", log_model=True, name=f"Test: {test_chr}, Val: {val_chr}")
trainer = pl.Trainer(logger=logger, callbacks=[ModelSummary(max_depth=2)], devices=1, num_sanity_val_steps=0)
if os.path.exists(test_model_folder) and os.path.isdir(test_model_folder):
shutil.rmtree(test_model_folder)
time.sleep(2)
try:
os.makedirs(test_model_folder, exist_ok=True)
except OSError:
pass
logger.watch(model, log="all", log_freq=10)
trainer.test(model, datamodule=genomic_data_module)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
prog='ProgramName',
description='What the program does',
epilog='Text at the bottom of help')
parser.add_argument('-j', '--jobid', required=False)
parser.add_argument('-v', '--val_chr', required=True)
parser.add_argument('-t', '--test_chr', required=True)
parser.add_argument('-m', '--model', required=True)
parser.add_argument('-me', '--model_ed', required=False)
parser.add_argument('-f', '--hic_filename', required=False, default="")
args = parser.parse_args()
print("Running testing of HiCDiffusion. The configuration:", flush=True)
print(args, flush=True)
print(flush=True)
main(args.val_chr, args.test_chr, args.model, args.hic_filename, args.model_ed)