Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix: add the implementation of the tile's and GatherND's grad and add OptionalArgs #1202

Merged
merged 3 commits into from
Oct 20, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 10 additions & 0 deletions src/TensorFlowNET.Core/APIs/tf.array.cs
Original file line number Diff line number Diff line change
Expand Up @@ -140,6 +140,16 @@ public Tensor identity(Tensor input, string name = null)
public Tensor gather(Tensor @params, Tensor indices, string name = null, int axis = 0)
=> array_ops.gather(@params, indices, name: name, axis: ops.convert_to_tensor(axis));

/// <summary>
/// Gather slices from `params` into a Tensor with shape specified by `indices`.
/// </summary>
/// <param name="params"></param>
/// <param name="indices"></param>
/// <param name="name"></param>
/// <returns></returns>
public Tensor gather_nd(Tensor @params, Tensor indices, string name = null)
=> gen_array_ops.gather_nd(@params, indices, name: name);

/// <summary>
/// Return the elements, either from `x` or `y`, depending on the `condition`.
/// </summary>
Expand Down
43 changes: 43 additions & 0 deletions src/TensorFlowNET.Core/Gradients/array_grad.cs
Original file line number Diff line number Diff line change
Expand Up @@ -381,5 +381,48 @@ public static Tensor[] _ReverseV2Grad(Operation op, Tensor[] grads)
var axis = op.inputs[1];
return new Tensor[] { array_ops.reverse(grad, axis), null };
}

[RegisterGradient("Tile")]
public static Tensor[] _TileGrad(Operation op, Tensor[] grads)
{
var grad = grads[0];
var input_shape = array_ops.shape(op.inputs[0], out_type: op.inputs[1].dtype);
var split_shape = array_ops.reshape(array_ops.transpose(array_ops.stack(new Tensor[] { op.inputs[1], input_shape })), new Shape(-1));
var axes = math_ops.range(0, array_ops.size(split_shape), 2);

//# Sum reduces grad along the first dimension for IndexedSlices
//if isinstance(grad, indexed_slices_lib.IndexedSlices):
//input_shape_0 = math_ops.cast(input_shape[0], grad.indices.dtype)
//grad = math_ops.unsorted_segment_sum(
// grad.values, math_ops.mod(grad.indices, input_shape_0), input_shape_0)
//split_shape = array_ops.concat([[1], split_shape[1:]], axis = 0)

var input_grad = math_ops.reduce_sum(array_ops.reshape(grad, split_shape), axes);
if (!tf.Context.executing_eagerly())
{
input_grad.set_shape(op.inputs[0].GetShape());
}
return new Tensor[] { input_grad, null };
}

[RegisterGradient("GatherNd")]
public static Tensor[] _GatherNdGrad(Operation op, Tensor[] grads)
{
var @ref = op.inputs[0];
var indices = op.inputs[1];
var grad = grads[0];
var ref_shape = array_ops.shape(@ref, out_type: indices.dtype);
Tensor ref_grad = null;
if (indices.shape.ndim == 2 && indices.shape.dims[indices.shape.Length - 1] == 1)
{
ref_grad = (Tensor)new IndexedSlices(grad, array_ops.squeeze(indices, axis: -1), ref_shape);
}
else
{
ref_grad = gen_array_ops.scatter_nd(indices, grad, ref_shape);
}
return new Tensor[] { ref_grad, null };
}

}
}
Original file line number Diff line number Diff line change
Expand Up @@ -4,10 +4,8 @@

namespace Tensorflow.Keras.ArgsDefinition
{
public class GRUOptionalArgs
public class GRUOptionalArgs : RnnOptionalArgs
{
public string Identifier => "GRU";

public Tensor Mask { get; set; } = null;
}
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@
using System;
using System.Collections.Generic;
using System.Text;

namespace Tensorflow.Keras.ArgsDefinition.Rnn
{
public class LSTMOptionalArgs : RnnOptionalArgs
{
public string Identifier => "LSTM";
}
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@
using System;
using System.Collections.Generic;
using System.Text;

namespace Tensorflow.Keras.ArgsDefinition.Rnn
{
public class SimpleRNNOptionalArgs : RnnOptionalArgs
{
public string Identifier => "SimpleRNN";
}
}
4 changes: 2 additions & 2 deletions src/TensorFlowNET.Core/Operations/array_ops.cs
Original file line number Diff line number Diff line change
Expand Up @@ -829,7 +829,7 @@ public static Tensor strided_slice_grad(Tensor shape, Tensor begin, Tensor end,
/// <returns>A `Tensor`. Has the same type as `input`.
/// Contains the same data as `input`, but has one or more dimensions of
/// size 1 removed.</returns>
public static Tensor squeeze(Tensor input, int[] axis = null, string name = null)
public static Tensor squeeze(Tensor input, Axis axis = null, string name = null)
=> gen_array_ops.squeeze(input, axis, name);

public static Tensor identity(Tensor input, string name = null)
Expand Down Expand Up @@ -990,7 +990,7 @@ public static Tensor gather(ResourceVariable @params, Tensor indices, string nam
return @params.sparse_read(indices, name);
}

public static Tensor transpose<T1>(T1 a, Axis perm, string name = "transpose", bool conjugate = false)
public static Tensor transpose<T1>(T1 a, Axis perm = null, string name = "transpose", bool conjugate = false)
{
return tf_with(ops.name_scope(name, "transpose", new { a }), scope =>
{
Expand Down
31 changes: 30 additions & 1 deletion test/TensorFlowNET.UnitTest/GradientTest/GradientEagerTest.cs
Original file line number Diff line number Diff line change
Expand Up @@ -62,7 +62,7 @@ public void SquaredDifference_1D()
// Calcute the gradient of (x1-x2)^2
// by Automatic Differentiation in Eager mode
// Expected is 2*(abs(x1-x2))
Tensor x1 = new NDArray( new float[] { 1, 3, 5, 21, 19, 17 });
Tensor x1 = new NDArray(new float[] { 1, 3, 5, 21, 19, 17 });
Tensor x2 = new NDArray(new float[] { 29, 27, 23, 7, 11, 13 });
float[] expected = new float[]
{
Expand Down Expand Up @@ -173,5 +173,34 @@ public void ConditionalMultiply()
var result = grad(x, 4);
Assert.AreEqual((float)result, 4.0f);
}

[TestMethod]
public void Tile()
{
var a = tf.constant(new int[] { 1 }, TF_DataType.TF_FLOAT);
var b = tf.constant(new int[] { 2 });
using (var tape = tf.GradientTape())
{
tape.watch(a);
var y = tf.tile(a, b);
var grad = tape.gradient(y, a);
Assert.AreEqual((float)grad.numpy(), 2.0f);
}
}

[TestMethod]
public void GatherNdTest()
{
var x = tf.constant(new float[,] { { 1.0f, 2.0f, 3.0f }, { 1.0f, 2.0f, 3.0f }, { 1.0f, 2.0f, 3.0f } }, dtype: TF_DataType.TF_FLOAT);
var indices = tf.constant(new int[,] { { 0, 1 }, { 1, 1 }, { 2, 1 } }, dtype: TF_DataType.TF_INT32);
using (var tape = tf.GradientTape())
{
tape.watch(x);
var res = tf.gather_nd(x, indices);
var grad = tape.gradient(res, x);
var expected = np.array(new float[,] { { 0f, 1f, 0f }, { 0f, 1f, 0f }, { 0f, 1f, 0f } });
Assert.IsTrue(Enumerable.SequenceEqual(grad.ToArray<float>(), expected.ToArray<float>()));
}
}
}
}
Loading