Skip to content

Releases: SnapDragonfly/pytorch

Release pytorch-v2.5.1+l4t35.6-cp38-cp38-aarch64

09 Jan 08:38
Compare
Choose a tag to compare

Note: Build for Jetpack 5.1.4/6.2 with USE_FLASH_ATTENTION=0.
Note: CUDA: 11.8.89 / 12.6.68

  • Jetpack 5
Software part of jetson-stats 4.2.12 - (c) 2024, Raffaello Bonghi
Model: NVIDIA Orin Nano Developer Kit - Jetpack 5.1.4 [L4T 35.6.0]
NV Power Mode[0]: 15W
Serial Number: [XXX Show with: jetson_release -s XXX]
Hardware:
 - P-Number: p3767-0005
 - Module: NVIDIA Jetson Orin Nano (Developer kit)
Platform:
 - Distribution: Ubuntu 20.04 focal
 - Release: 5.10.216-tegra
jtop:
 - Version: 4.2.12
 - Service: Active
Libraries:
 - CUDA: 11.8.89
 - cuDNN: 8.6.0.166
 - TensorRT: 8.5.2.2
 - VPI: 2.4.8
 - Vulkan: 1.3.204
 - OpenCV: 4.9.0 - with CUDA: YES
  • Jetpack 6.2
Software part of jetson-stats 4.3.1 - (c) 2024, Raffaello Bonghi
Model: NVIDIA Jetson Orin Nano Developer Kit - Jetpack 6.2 [L4T 36.4.3]
NV Power Mode[0]: 15W
Serial Number: [XXX Show with: jetson_release -s XXX]
Hardware:
 - P-Number: p3767-0005
 - Module: NVIDIA Jetson Orin Nano (Developer kit)
Platform:
 - Distribution: Ubuntu 22.04 Jammy Jellyfish
 - Release: 5.15.148-tegra
jtop:
 - Version: 4.3.1
 - Service: Active
Libraries:
 - CUDA: 12.6.68
 - cuDNN: 9.3.0.75
 - TensorRT: 10.3.0.30
 - VPI: 3.2.4
 - Vulkan: 1.3.204
 - OpenCV: 4.11.0 - with CUDA: YES

Release pytorch-v2.3.1+l4t35.6-cp38-cp38-aarch64

05 Jan 10:51
Compare
Choose a tag to compare

Note: Build for Jetpack 5.1.4 with USE_FLASH_ATTENTION=0.
Note: CUDA: 11.4.315

Software part of jetson-stats 4.2.12 - (c) 2024, Raffaello Bonghi
Model: NVIDIA Orin Nano Developer Kit - Jetpack 5.1.4 [L4T 35.6.0]
NV Power Mode[0]: 15W
Serial Number: [XXX Show with: jetson_release -s XXX]
Hardware:
 - P-Number: p3767-0005
 - Module: NVIDIA Jetson Orin Nano (Developer kit)
Platform:
 - Distribution: Ubuntu 20.04 focal
 - Release: 5.10.216-tegra
jtop:
 - Version: 4.2.12
 - Service: Active
Libraries:
 - CUDA: 11.4.315
 - cuDNN: 8.6.0.166
 - TensorRT: 8.5.2.2
 - VPI: 2.4.8
 - OpenCV: 4.9.0 - with CUDA: YES
DeepStream C/C++ SDK version: 6.3

Python Environment:
Python 3.8.10
    GStreamer:                   YES (1.16.3)
  NVIDIA CUDA:                   YES (ver 11.4, CUFFT CUBLAS FAST_MATH)
        OpenCV version: 4.9.0  CUDA True
          YOLO version: 8.3.33
         Torch version: 2.1.0a0+41361538.nv23.06
   Torchvision version: 0.16.1+fdea156
DeepStream SDK version: 1.1.8

Release pytorch-v2.4.1+l4t35.6-cp38-cp38-aarch64

05 Jan 13:11
Compare
Choose a tag to compare

Note: Build for Jetpack 5.1.4 with USE_FLASH_ATTENTION=0.
Note: CUDA: 11.4.315

Software part of jetson-stats 4.2.12 - (c) 2024, Raffaello Bonghi
Model: NVIDIA Orin Nano Developer Kit - Jetpack 5.1.4 [L4T 35.6.0]
NV Power Mode[0]: 15W
Serial Number: [XXX Show with: jetson_release -s XXX]
Hardware:
 - P-Number: p3767-0005
 - Module: NVIDIA Jetson Orin Nano (Developer kit)
Platform:
 - Distribution: Ubuntu 20.04 focal
 - Release: 5.10.216-tegra
jtop:
 - Version: 4.2.12
 - Service: Active
Libraries:
 - CUDA: 11.4.315
 - cuDNN: 8.6.0.166
 - TensorRT: 8.5.2.2
 - VPI: 2.4.8
 - OpenCV: 4.9.0 - with CUDA: YES
DeepStream C/C++ SDK version: 6.3

Python Environment:
Python 3.8.10
    GStreamer:                   YES (1.16.3)
  NVIDIA CUDA:                   YES (ver 11.4, CUFFT CUBLAS FAST_MATH)
        OpenCV version: 4.9.0  CUDA True
          YOLO version: 8.3.33
         Torch version: 2.1.0a0+41361538.nv23.06
   Torchvision version: 0.16.1+fdea156
DeepStream SDK version: 1.1.8

Release pytorch_v2.2.2+l4t35.6-cp38-cp38-aarch64

28 Dec 01:03
Compare
Choose a tag to compare

It seems v2.2.2 would be stable for v2.2.x series. Now build it for Jetpack 5.1.4.

Note: CUDA: 11.4.315

Software part of jetson-stats 4.2.12 - (c) 2024, Raffaello Bonghi
Model: NVIDIA Orin Nano Developer Kit - Jetpack 5.1.4 [L4T 35.6.0]
NV Power Mode[0]: 15W
Serial Number: [XXX Show with: jetson_release -s XXX]
Hardware:
 - P-Number: p3767-0005
 - Module: NVIDIA Jetson Orin Nano (Developer kit)
Platform:
 - Distribution: Ubuntu 20.04 focal
 - Release: 5.10.216-tegra
jtop:
 - Version: 4.2.12
 - Service: Active
Libraries:
 - CUDA: 11.4.315
 - cuDNN: 8.6.0.166
 - TensorRT: 8.5.2.2
 - VPI: 2.4.8
 - OpenCV: 4.9.0 - with CUDA: YES
DeepStream C/C++ SDK version: 6.3

Python Environment:
Python 3.8.10
    GStreamer:                   YES (1.16.3)
  NVIDIA CUDA:                   YES (ver 11.4, CUFFT CUBLAS FAST_MATH)
        OpenCV version: 4.9.0  CUDA True
          YOLO version: 8.3.33
         Torch version: 2.1.0a0+41361538.nv23.06
   Torchvision version: 0.16.1+fdea156
DeepStream SDK version: 1.1.8

Release pytorch_v2.1.2+l4t35.6-cp38-cp38-aarch64

28 Dec 00:57
Compare
Choose a tag to compare

Just a test release for NVIDIA Jetson Orin Nano 8GB

As we have met some difficulties of pytorch support on Jetpack 5.1.4 L4T 35.6(ubuntu 20.04). NVDIA is now on Jetpack6 which bases ubuntu 22.04.

Build Environment:

Software part of jetson-stats 4.2.12 - (c) 2024, Raffaello Bonghi
Model: NVIDIA Orin Nano Developer Kit - Jetpack 5.1.4 [L4T 35.6.0]
NV Power Mode[0]: 15W
Serial Number: [XXX Show with: jetson_release -s XXX]
Hardware:
 - P-Number: p3767-0005
 - Module: NVIDIA Jetson Orin Nano (Developer kit)
Platform:
 - Distribution: Ubuntu 20.04 focal
 - Release: 5.10.216-tegra
jtop:
 - Version: 4.2.12
 - Service: Active
Libraries:
 - CUDA: 11.4.315
 - cuDNN: 8.6.0.166
 - TensorRT: 8.5.2.2
 - VPI: 2.4.8
 - OpenCV: 4.9.0 - with CUDA: YES
DeepStream C/C++ SDK version: 6.3

Python Environment:
Python 3.8.10
    GStreamer:                   YES (1.16.3)
  NVIDIA CUDA:                   YES (ver 11.4, CUFFT CUBLAS FAST_MATH)
        OpenCV version: 4.9.0  CUDA True
          YOLO version: 8.3.33
         Torch version: 2.1.0a0+41361538.nv23.06
   Torchvision version: 0.16.1+fdea156
DeepStream SDK version: 1.1.8