Skip to content

Commit

Permalink
Deployed 5730ca5 with MkDocs version: 1.5.2
Browse files Browse the repository at this point in the history
  • Loading branch information
d9w committed Nov 7, 2023
1 parent db8a8ff commit fca51af
Show file tree
Hide file tree
Showing 124 changed files with 22 additions and 10,044 deletions.
16 changes: 16 additions & 0 deletions 3_ga.html
Original file line number Diff line number Diff line change
Expand Up @@ -362,6 +362,13 @@
NSGA-II
</a>

</li>

<li class="md-nav__item">
<a href="#quiz-on-ga-and-moea" class="md-nav__link">
Quiz on GA and MOEA
</a>

</li>

</ul>
Expand Down Expand Up @@ -417,6 +424,13 @@
NSGA-II
</a>

</li>

<li class="md-nav__item">
<a href="#quiz-on-ga-and-moea" class="md-nav__link">
Quiz on GA and MOEA
</a>

</li>

</ul>
Expand Down Expand Up @@ -446,6 +460,8 @@ <h2 id="multi-objective-optimization">Multi-objective optimization<a class="head
<h2 id="nsga-ii">NSGA-II<a class="headerlink" href="#nsga-ii" title="Permanent link">🔗</a></h2>
<p><a href="https://github.com/SupaeroDataScience/stochastic/blob/master/notebooks/NSGA-II.ipynb">Notebook</a></p>
<p><a href="https://colab.research.google.com/github/SupaeroDataScience/stochastic/blob/master/notebooks/NSGA-II.ipynb">Colab</a></p>
<h2 id="quiz-on-ga-and-moea">Quiz on GA and MOEA<a class="headerlink" href="#quiz-on-ga-and-moea" title="Permanent link">🔗</a></h2>
<p><a href="https://lms.isae.fr/mod/quiz/view.php?id=112071">LMS</a></p>



Expand Down
2 changes: 1 addition & 1 deletion search/search_index.json
Original file line number Diff line number Diff line change
@@ -1 +1 @@
{"config":{"lang":["en"],"separator":"[\\s\\-]+","pipeline":["stopWordFilter"]},"docs":[{"location":"index.html","title":"Stochastic Optimization","text":"<ul> <li>Home</li> <li>Github repository</li> </ul>"},{"location":"index.html#syllabus","title":"Syllabus","text":"<p>This class covers stochastic methods of optimization, primarily simulated annealing, evolutionary strategies, and genetic algorithms. The class is 10 hours total and uses HTML presentations and Jupyter notebooks in Python for exercises. The evaluation for this class is based on quiz responses during the three classes.</p> Schedule 16/10 Introduction and simulated annealing Continuous optimization, random search, simulated annealing 17/10 Evolutionary Strategies Population-based methods, 1+1 ES, CMA-ES 07/11 Genetic Algorithms Genetic Algorithm, Multi-Objective Optimization, NSGA-II"},{"location":"index.html#resources","title":"Resources","text":"<ul> <li>Pymoo</li> <li>pycma</li> <li>CMAES</li> <li>DAEP</li> <li>gplearn</li> <li>evosax</li> <li>ECJ</li> </ul> <p>The 2nd year elective class EISC217: Evolutionary Computation goes into further detail on many of these same topics and introduces new topics such as genetic programming and quality diversity.</p> <p>The Introduction to Evolutionary Computing book by A. E. Eiben is recommended as reading for this class.</p>"},{"location":"0_intro.html","title":"Introduction","text":"<p>An introduction to stochastic optimization methods and applications, an overview of continuous optimization problems, and an outline of this class.</p> <p>Slides</p>"},{"location":"1_sa.html","title":"Random Search to Simulated Annealing","text":"<p>Please follow the notebooks for this section of the class on random search and simulated annealing.</p>"},{"location":"1_sa.html#random-search","title":"Random search","text":"<p>notebook</p> <p>Colab</p>"},{"location":"1_sa.html#simulated-annealing","title":"Simulated annealing","text":"<p>notebook</p> <p>Colab</p>"},{"location":"1_sa.html#quiz-on-random-search-and-simulated-annealing","title":"Quiz on random search and simulated annealing","text":"<p>LMS</p>"},{"location":"2_es.html","title":"Evolutionary Strategies","text":"<p>In this class, we continue building on examples of stochastic search for continuous optimization, covering simple evolutionary strategies and the Covariance Matrix Adaptation Evolutionary Strategy.</p> <p>Notebook</p> <p>Colab</p>"},{"location":"2_es.html#neuroevolution","title":"Neuroevolution","text":"<p>Notebook</p> <p>Colab</p>"},{"location":"2_es.html#quiz-on-evolutionary-strategies","title":"Quiz on evolutionary strategies","text":"<p>LMS</p>"},{"location":"3_ga.html","title":"Genetic Algorithms","text":""},{"location":"3_ga.html#genetic-algorithms_1","title":"Genetic algorithms","text":"<p>Notebook</p> <p>Colab</p>"},{"location":"3_ga.html#multi-objective-optimization","title":"Multi-objective optimization","text":"<p>Slides</p>"},{"location":"3_ga.html#nsga-ii","title":"NSGA-II","text":"<p>Notebook</p> <p>Colab</p>"}]}
{"config":{"lang":["en"],"separator":"[\\s\\-]+","pipeline":["stopWordFilter"]},"docs":[{"location":"index.html","title":"Stochastic Optimization","text":"<ul> <li>Home</li> <li>Github repository</li> </ul>"},{"location":"index.html#syllabus","title":"Syllabus","text":"<p>This class covers stochastic methods of optimization, primarily simulated annealing, evolutionary strategies, and genetic algorithms. The class is 10 hours total and uses HTML presentations and Jupyter notebooks in Python for exercises. The evaluation for this class is based on quiz responses during the three classes.</p> Schedule 16/10 Introduction and simulated annealing Continuous optimization, random search, simulated annealing 17/10 Evolutionary Strategies Population-based methods, 1+1 ES, CMA-ES 07/11 Genetic Algorithms Genetic Algorithm, Multi-Objective Optimization, NSGA-II"},{"location":"index.html#resources","title":"Resources","text":"<ul> <li>Pymoo</li> <li>pycma</li> <li>CMAES</li> <li>DAEP</li> <li>gplearn</li> <li>evosax</li> <li>ECJ</li> </ul> <p>The 2nd year elective class EISC217: Evolutionary Computation goes into further detail on many of these same topics and introduces new topics such as genetic programming and quality diversity.</p> <p>The Introduction to Evolutionary Computing book by A. E. Eiben is recommended as reading for this class.</p>"},{"location":"0_intro.html","title":"Introduction","text":"<p>An introduction to stochastic optimization methods and applications, an overview of continuous optimization problems, and an outline of this class.</p> <p>Slides</p>"},{"location":"1_sa.html","title":"Random Search to Simulated Annealing","text":"<p>Please follow the notebooks for this section of the class on random search and simulated annealing.</p>"},{"location":"1_sa.html#random-search","title":"Random search","text":"<p>notebook</p> <p>Colab</p>"},{"location":"1_sa.html#simulated-annealing","title":"Simulated annealing","text":"<p>notebook</p> <p>Colab</p>"},{"location":"1_sa.html#quiz-on-random-search-and-simulated-annealing","title":"Quiz on random search and simulated annealing","text":"<p>LMS</p>"},{"location":"2_es.html","title":"Evolutionary Strategies","text":"<p>In this class, we continue building on examples of stochastic search for continuous optimization, covering simple evolutionary strategies and the Covariance Matrix Adaptation Evolutionary Strategy.</p> <p>Notebook</p> <p>Colab</p>"},{"location":"2_es.html#neuroevolution","title":"Neuroevolution","text":"<p>Notebook</p> <p>Colab</p>"},{"location":"2_es.html#quiz-on-evolutionary-strategies","title":"Quiz on evolutionary strategies","text":"<p>LMS</p>"},{"location":"3_ga.html","title":"Genetic Algorithms","text":""},{"location":"3_ga.html#genetic-algorithms_1","title":"Genetic algorithms","text":"<p>Notebook</p> <p>Colab</p>"},{"location":"3_ga.html#multi-objective-optimization","title":"Multi-objective optimization","text":"<p>Slides</p>"},{"location":"3_ga.html#nsga-ii","title":"NSGA-II","text":"<p>Notebook</p> <p>Colab</p>"},{"location":"3_ga.html#quiz-on-ga-and-moea","title":"Quiz on GA and MOEA","text":"<p>LMS</p>"}]}
10 changes: 5 additions & 5 deletions sitemap.xml
Original file line number Diff line number Diff line change
Expand Up @@ -2,27 +2,27 @@
<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">
<url>
<loc>https://supaerodatascience.github.io/stochastic/index.html</loc>
<lastmod>2023-10-17</lastmod>
<lastmod>2023-11-07</lastmod>
<changefreq>daily</changefreq>
</url>
<url>
<loc>https://supaerodatascience.github.io/stochastic/0_intro.html</loc>
<lastmod>2023-10-17</lastmod>
<lastmod>2023-11-07</lastmod>
<changefreq>daily</changefreq>
</url>
<url>
<loc>https://supaerodatascience.github.io/stochastic/1_sa.html</loc>
<lastmod>2023-10-17</lastmod>
<lastmod>2023-11-07</lastmod>
<changefreq>daily</changefreq>
</url>
<url>
<loc>https://supaerodatascience.github.io/stochastic/2_es.html</loc>
<lastmod>2023-10-17</lastmod>
<lastmod>2023-11-07</lastmod>
<changefreq>daily</changefreq>
</url>
<url>
<loc>https://supaerodatascience.github.io/stochastic/3_ga.html</loc>
<lastmod>2023-10-17</lastmod>
<lastmod>2023-11-07</lastmod>
<changefreq>daily</changefreq>
</url>
</urlset>
Binary file modified sitemap.xml.gz
Binary file not shown.
245 changes: 0 additions & 245 deletions slides/0_intro.html

This file was deleted.

Loading

0 comments on commit fca51af

Please sign in to comment.