Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix sampling algorithm #96

Merged
merged 14 commits into from
Jul 30, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,7 @@ LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
OMEinsum = "ebe7aa44-baf0-506c-a96f-8464559b3922"
Pkg = "44cfe95a-1eb2-52ea-b672-e2afdf69b78f"
PrecompileTools = "aea7be01-6a6a-4083-8856-8a6e6704d82a"
PrettyTables = "08abe8d2-0d0c-5749-adfa-8a2ac140af0d"
Requires = "ae029012-a4dd-5104-9daa-d747884805df"
StatsBase = "2913bbd2-ae8a-5f71-8c99-4fb6c76f3a91"
TropicalNumbers = "b3a74e9c-7526-4576-a4eb-79c0d4c32334"
Expand All @@ -25,6 +26,7 @@ LinearAlgebra = "1"
OMEinsum = "0.8"
Pkg = "1"
PrecompileTools = "1"
PrettyTables = "2"
Requires = "1"
StatsBase = "0.34"
TropicalNumbers = "0.5.4, 0.6"
Expand Down
1 change: 1 addition & 0 deletions docs/src/api/public.md
Original file line number Diff line number Diff line change
Expand Up @@ -68,4 +68,5 @@ read_td_file
sample
update_evidence!
update_temperature
random_matrix_product_state
```
3 changes: 2 additions & 1 deletion src/Core.jl
Original file line number Diff line number Diff line change
Expand Up @@ -204,7 +204,8 @@ Get the cardinalities of variables in this tensor network.
"""
function get_cards(tn::TensorNetworkModel; fixedisone = false)::Vector
vars = get_vars(tn)
[fixedisone && haskey(tn.evidence, vars[k]) ? 1 : length(tn.tensors[k]) for k in eachindex(vars)]
size_dict = OMEinsum.get_size_dict(getixsv(tn.code), tn.tensors)
[fixedisone && haskey(tn.evidence, vars[k]) ? 1 : size_dict[vars[k]] for k in eachindex(vars)]
end

chevidence(tn::TensorNetworkModel, evidence) = TensorNetworkModel(tn.vars, tn.code, tn.tensors, evidence)
Expand Down
6 changes: 3 additions & 3 deletions src/RescaledArray.jl
Original file line number Diff line number Diff line change
Expand Up @@ -23,12 +23,12 @@ $(TYPEDSIGNATURES)
Returns a rescaled array that equivalent to the input tensor.
"""
function rescale_array(tensor::AbstractArray{T})::RescaledArray where {T}
maxf = maximum(tensor)
maxf = maximum(abs, tensor)
if iszero(maxf)
@warn("The maximum value of the array to rescale is 0!")
return RescaledArray(zero(T), tensor)
end
return RescaledArray(log(maxf), OMEinsum.asarray(tensor ./ maxf, tensor))
return RescaledArray(T(log(maxf)), OMEinsum.asarray(tensor ./ maxf, tensor))
end

for CT in [:DynamicEinCode, :StaticEinCode]
Expand All @@ -46,4 +46,4 @@ end
Base.size(arr::RescaledArray) = size(arr.normalized_value)
Base.size(arr::RescaledArray, i::Int) = size(arr.normalized_value, i)

match_arraytype(::Type{<:RescaledArray{T, N}}, target::AbstractArray{T, N}) where {T, N} = rescale_array(target)
match_arraytype(::Type{<:RescaledArray{T, N, AT}}, target::AbstractArray{T, N}) where {T, N, AT} = rescale_array(match_arraytype(AT, target))
4 changes: 4 additions & 0 deletions src/TensorInference.jl
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,7 @@ using OMEinsum, LinearAlgebra
using DocStringExtensions, TropicalNumbers
# The Tropical GEMM support
using StatsBase
using PrettyTables
import Pkg

# reexport OMEinsum functions
Expand All @@ -34,6 +35,9 @@ export sample
# MMAP
export MMAPModel

# utils
export random_matrix_product_state

include("Core.jl")
include("RescaledArray.jl")
include("utils.jl")
Expand Down
22 changes: 8 additions & 14 deletions src/mar.jl
Original file line number Diff line number Diff line change
Expand Up @@ -16,10 +16,10 @@ end
# `CacheTree` stores intermediate `NestedEinsum` contraction results.
# It is a tree structure that isomorphic to the contraction tree,
# `content` is the cached intermediate contraction result.
# `siblings` are the siblings of current node.
struct CacheTree{T}
# `children` are the children of current node, e.g. tensors that are contracted to get `content`.
mutable struct CacheTree{T}
content::AbstractArray{T}
siblings::Vector{CacheTree{T}}
const children::Vector{CacheTree{T}}
end

function cached_einsum(se::SlicedEinsum, @nospecialize(xs), size_dict)
Expand Down Expand Up @@ -62,7 +62,7 @@ function generate_gradient_tree(code::NestedEinsum, cache::CacheTree{T}, dy::Abs
if OMEinsum.isleaf(code)
return CacheTree(dy, CacheTree{T}[])
else
xs = ntuple(i -> cache.siblings[i].content, length(cache.siblings))
xs = ntuple(i -> cache.children[i].content, length(cache.children))
# `einsum_grad` is the back-propagation rule for einsum function.
# If the forward pass is `y = einsum(EinCode(inputs_labels, output_labels), (A, B, ...), size_dict)`
# Then the back-propagation pass is
Expand All @@ -73,7 +73,7 @@ function generate_gradient_tree(code::NestedEinsum, cache::CacheTree{T}, dy::Abs
# ```
# Let `L` be the loss, we will have `y̅ := ∂L/∂y`, `A̅ := ∂L/∂A`...
dxs = einsum_backward_rule(code.eins, xs, cache.content, size_dict, dy)
return CacheTree(dy, generate_gradient_tree.(code.args, cache.siblings, dxs, Ref(size_dict)))
return CacheTree(dy, generate_gradient_tree.(code.args, cache.children, dxs, Ref(size_dict)))
end
end

Expand Down Expand Up @@ -116,7 +116,7 @@ function extract_leaves!(code, cache, res)
res[code.tensorindex] = cache.content
else
# resurse deeper
extract_leaves!.(code.args, cache.siblings, Ref(res))
extract_leaves!.(code.args, cache.children, Ref(res))
end
return res
end
Expand Down Expand Up @@ -145,10 +145,7 @@ The following example is taken from [`examples/asia-network/main.jl`](https://te
```jldoctest; setup = :(using TensorInference, Random; Random.seed!(0))
julia> model = read_model_file(pkgdir(TensorInference, "examples", "asia-network", "model.uai"));

julia> tn = TensorNetworkModel(model; evidence=Dict(1=>0))
TensorNetworkModel{Int64, DynamicNestedEinsum{Int64}, Array{Float64}}
variables: 1 (evidence → 0), 2, 3, 4, 5, 6, 7, 8
contraction time = 2^6.022, space = 2^2.0, read-write = 2^7.077
julia> tn = TensorNetworkModel(model; evidence=Dict(1=>0));

julia> marginals(tn)
Dict{Vector{Int64}, Vector{Float64}} with 8 entries:
Expand All @@ -161,10 +158,7 @@ Dict{Vector{Int64}, Vector{Float64}} with 8 entries:
[7] => [0.145092, 0.854908]
[2] => [0.05, 0.95]

julia> tn2 = TensorNetworkModel(model; evidence=Dict(1=>0), mars=[[2, 3], [3, 4]])
TensorNetworkModel{Int64, DynamicNestedEinsum{Int64}, Array{Float64}}
variables: 1 (evidence → 0), 2, 3, 4, 5, 6, 7, 8
contraction time = 2^7.781, space = 2^5.0, read-write = 2^8.443
julia> tn2 = TensorNetworkModel(model; evidence=Dict(1=>0), mars=[[2, 3], [3, 4]]);

julia> marginals(tn2)
Dict{Vector{Int64}, Matrix{Float64}} with 2 entries:
Expand Down
Loading
Loading