-
Notifications
You must be signed in to change notification settings - Fork 74
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Co-authored-by: Egbert Rijke <[email protected]>
- Loading branch information
1 parent
0ab8717
commit 3987828
Showing
119 changed files
with
1,624 additions
and
836 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,91 @@ | ||
# Anafunctors between categories | ||
|
||
```agda | ||
module category-theory.anafunctors-categories where | ||
``` | ||
|
||
<details><summary>Imports</summary> | ||
|
||
```agda | ||
open import category-theory.anafunctors-precategories | ||
open import category-theory.categories | ||
open import category-theory.functors-categories | ||
open import category-theory.functors-precategories | ||
open import category-theory.isomorphisms-in-precategories | ||
open import category-theory.precategories | ||
|
||
open import foundation.action-on-identifications-functions | ||
open import foundation.cartesian-product-types | ||
open import foundation.dependent-pair-types | ||
open import foundation.identity-types | ||
open import foundation.propositional-truncations | ||
open import foundation.universe-levels | ||
``` | ||
|
||
</details> | ||
|
||
## Idea | ||
|
||
An **anafunctor** is a [functor](category-theory.functors-categories.md) that is | ||
only defined up to [isomorphism](category-theory.isomorphisms-in-categories.md). | ||
|
||
## Definition | ||
|
||
```agda | ||
anafunctor-Category : | ||
{l1 l2 l3 l4 : Level} (l : Level) → | ||
Category l1 l2 → Category l3 l4 → UU (l1 ⊔ l2 ⊔ l3 ⊔ l4 ⊔ lsuc l) | ||
anafunctor-Category l C D = | ||
anafunctor-Precategory l (precategory-Category C) (precategory-Category D) | ||
|
||
module _ | ||
{l1 l2 l3 l4 l5 : Level} (C : Category l1 l2) (D : Category l3 l4) | ||
(F : anafunctor-Category l5 C D) | ||
where | ||
|
||
object-anafunctor-Category : obj-Category C → obj-Category D → UU l5 | ||
object-anafunctor-Category = | ||
object-anafunctor-Precategory | ||
( precategory-Category C) | ||
( precategory-Category D) | ||
( F) | ||
|
||
hom-anafunctor-Category : | ||
(X Y : obj-Category C) (U : obj-Category D) | ||
(u : object-anafunctor-Category X U) | ||
(V : obj-Category D) (v : object-anafunctor-Category Y V) → | ||
type-hom-Category C X Y → type-hom-Category D U V | ||
hom-anafunctor-Category = | ||
hom-anafunctor-Precategory | ||
( precategory-Category C) | ||
( precategory-Category D) | ||
( F) | ||
``` | ||
|
||
## Properties | ||
|
||
### Any functor between categories induces an anafunctor | ||
|
||
```agda | ||
module _ | ||
{l1 l2 l3 l4 : Level} (C : Category l1 l2) (D : Category l3 l4) | ||
where | ||
|
||
anafunctor-functor-Category : | ||
functor-Category C D → anafunctor-Category l4 C D | ||
anafunctor-functor-Category = | ||
anafunctor-functor-Precategory | ||
( precategory-Category C) | ||
( precategory-Category D) | ||
``` | ||
|
||
### The action on objects of an anafunctor between categories | ||
|
||
```agda | ||
image-object-anafunctor-Category : | ||
{l1 l2 l3 l4 l5 : Level} (C : Category l1 l2) (D : Category l3 l4) → | ||
anafunctor-Category l5 C D → obj-Category C → UU (l3 ⊔ l5) | ||
image-object-anafunctor-Category C D F X = | ||
Σ ( obj-Category D) | ||
( λ U → type-trunc-Prop (object-anafunctor-Category C D F X U)) | ||
``` |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
2 changes: 1 addition & 1 deletion
2
...-theory/coproducts-precategories.lagda.md → ...eory/coproducts-in-precategories.lagda.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,69 @@ | ||
# Endomorphisms in categories | ||
|
||
```agda | ||
module category-theory.endomorphisms-in-categories where | ||
``` | ||
|
||
<details><summary>Imports</summary> | ||
|
||
```agda | ||
open import category-theory.categories | ||
open import category-theory.endomorphisms-in-precategories | ||
|
||
open import foundation.dependent-pair-types | ||
open import foundation.identity-types | ||
open import foundation.sets | ||
open import foundation.universe-levels | ||
|
||
open import group-theory.monoids | ||
open import group-theory.semigroups | ||
``` | ||
|
||
</details> | ||
|
||
## Definition | ||
|
||
### The monoid of endomorphisms on an object in a category | ||
|
||
```agda | ||
module _ | ||
{l1 l2 : Level} (C : Category l1 l2) (X : obj-Category C) | ||
where | ||
|
||
type-endo-Category : UU l2 | ||
type-endo-Category = type-endo-Precategory (precategory-Category C) X | ||
|
||
comp-endo-Category : | ||
type-endo-Category → type-endo-Category → type-endo-Category | ||
comp-endo-Category = comp-endo-Precategory (precategory-Category C) X | ||
|
||
id-endo-Category : type-endo-Category | ||
id-endo-Category = id-endo-Precategory (precategory-Category C) X | ||
|
||
associative-comp-endo-Category : | ||
(h g f : type-endo-Category) → | ||
( comp-endo-Category (comp-endo-Category h g) f) = | ||
( comp-endo-Category h (comp-endo-Category g f)) | ||
associative-comp-endo-Category = | ||
associative-comp-endo-Precategory (precategory-Category C) X | ||
|
||
left-unit-law-comp-endo-Category : | ||
(f : type-endo-Category) → comp-endo-Category id-endo-Category f = f | ||
left-unit-law-comp-endo-Category = | ||
left-unit-law-comp-endo-Precategory (precategory-Category C) X | ||
|
||
right-unit-law-comp-endo-Category : | ||
(f : type-endo-Category) → comp-endo-Category f id-endo-Category = f | ||
right-unit-law-comp-endo-Category = | ||
right-unit-law-comp-endo-Precategory (precategory-Category C) X | ||
|
||
set-endo-Category : Set l2 | ||
set-endo-Category = set-endo-Precategory (precategory-Category C) X | ||
|
||
semigroup-endo-Category : Semigroup l2 | ||
semigroup-endo-Category = | ||
semigroup-endo-Precategory (precategory-Category C) X | ||
|
||
monoid-endo-Category : Monoid l2 | ||
monoid-endo-Category = monoid-endo-Precategory (precategory-Category C) X | ||
``` |
Oops, something went wrong.