Skip to content

Vision-CAIR/HalentNet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

HalentNet: Multimodal Trajectory Forecasting with Hallucinative Intents

This repository contains the code of HalentNet: Multimodal Trajectory Forecasting with Hallucinative Intents for training and evaluation on nuScenes dataset. This project is built upon this repository.

Environment Setup

conda create -n halentnet python=3.6
conda activate halentnet
pip install -r requirements.txt

Data Setup

Preprocessed nuScenes dataset can be found here. Download the files to experiments/processed. You can also download original nuScenes dataset and preprocess it by yourself following the instruction here.

Model Training

To train HalentNet on the nuScenes dataset, execute the following commands from within the trajectron/ directory.

python train_halentnet.py --train_data_dict nuScenes_train_full.pkl  --eval_data_dict nuScenes_val_full.pkl --device cuda:0 --load_model ../experiments/nuScenes/models/int_ee_me --checkpoint 12 --preprocess_workers 4  --train_epochs 35  --log_tag halent   --log_dir /path/to/log/

Model Evaluation

To evaluate the pretrained model, execute the following commands within the experiments/nuScenes directory. A trained HalentNet can be found under the path experiments/nuScenes/models/halentnet. A pretrained base model (Trajectron++) can be found here experiments/nuScenes/models/int_ee_me.

python evaluate.py --model /path/to/model/ --checkpoint=checkpoint_to_evaluate --data ../processed/nuScenes_test_full.pkl --node_type VEHICLE --prediction_horizon 2 4 6 8 10 12

About

No description, website, or topics provided.

Resources

License

MIT, MIT licenses found

Licenses found

MIT
LICENSE
MIT
LICENSE_Trajectron++

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages