Skip to content

Visual-Conception-Group/LGAP

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

The attacks can be evaluated using

  • preprocessor_blind.py
  • robust_acc_bpda_eot.py

Update the dataset and the classifier model accordingly.

Notebooks for training and evaluation are provided in notebooks folder.

Pretrained model can be downloaded here

Comments

This code is adapted from

BibTeX

@article{singh2023language,
  title={Language Guided Adversarial Purification},
  author={Singh, Himanshu and Subramanyam, AV},
  journal={arXiv preprint arXiv:2309.10348},
  year={2023}
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published