Skip to content

PyTorch bindings for R

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md
Notifications You must be signed in to change notification settings

WLOGSolutions/rTorch

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Travis build status AppVeyor build status

rTorch

The goal of rTorch is providing an R wrapper to [PyTorch](https://pytorch.org/. We have borrowed ideas and code used in R tensorflow to implement rTorch.

Besides the module torch, which provides PyTorch methods, classes and functions, the package also provides numpy as a method called np, and torchvision, as well. The dollar sign $ after the module will provide you access to those objects.

Installation

rTorch is available in GitHub only at this moment.

Install rTorch with:

devtools::install_github("f0nzie/rTorch")

Before start running rTorch, install a Python Anaconda environment first.

  1. Create a conda environment with conda create -n myenv python=3.7

  2. Activate the new environment with conda activate myenv

  3. Install PyTorch related packages with:

conda install python=3.6.6 pytorch-cpu torchvision-cpu matplotlib pandas -c pytorch

Now, you can load rTorch in R or RStudio.

The automatic installation, like in rtensorflow, may be available later.

Note. matplotlib and pandas are not really necessary, but I was asked if matplotlib or pandas would in PyTorch, that I decided to put them for testing and experimentation. They both work.

Matrices and Linear Algebra

There are five major type of Tensors in PyTorch

library(rTorch)

bt <- torch$ByteTensor(3L, 3L)
ft <- torch$FloatTensor(3L, 3L)
dt <- torch$DoubleTensor(3L, 3L)
lt <- torch$LongTensor(3L, 3L)
Bt <- torch$BoolTensor(5L, 5L)

ft
#> tensor([[4.7644e-44, 0.0000e+00, 0.0000e+00],
#>         [0.0000e+00, 1.5414e-44, 3.2230e-44],
#>         [1.4013e-45, 5.3249e-44, 2.8026e-45]])
dt
#> tensor([[2.1220e-314, 2.1220e-314, 2.1220e-314],
#>         [2.1220e-314, 2.1220e-314, 2.1220e-314],
#>         [2.1220e-314, 2.1220e-314, 2.1220e-314]], dtype=torch.float64)
Bt
#> tensor([[ True, False, False, False, False],
#>         [False, False, False, False, False],
#>         [False, False, False, False, False],
#>         [False, False, False, False, False],
#>         [False, False, False, False, False]], dtype=torch.bool)

A 4D tensor like in MNIST hand-written digits recognition dataset:

mnist_4d <- torch$FloatTensor(60000L, 3L, 28L, 28L)

# size
mnist_4d$size()
#> torch.Size([60000, 3, 28, 28])

# length
length(mnist_4d)
#> [1] 141120000

# shape, like in numpy
mnist_4d$shape
#> torch.Size([60000, 3, 28, 28])

# number of elements
mnist_4d$numel()
#> [1] 141120000

A 3D tensor:

ft3d <- torch$FloatTensor(4L, 3L, 2L)
ft3d
#> tensor([[[6.6692e-14, 4.5586e-41],
#>          [1.6222e+09, 3.0722e-41],
#>          [5.3976e+07, 3.0722e-41]],
#> 
#>         [[1.0438e-13, 4.5586e-41],
#>          [5.0447e-44, 0.0000e+00],
#>          [0.0000e+00, 0.0000e+00]],
#> 
#>         [[0.0000e+00, 0.0000e+00],
#>          [0.0000e+00, 0.0000e+00],
#>          [0.0000e+00, 0.0000e+00]],
#> 
#>         [[0.0000e+00, 0.0000e+00],
#>          [0.0000e+00, 0.0000e+00],
#>          [0.0000e+00, 0.0000e+00]]])
# get first element in a tensor
ft3d[1, 1, 1]
#> tensor(6.6692e-14)
bt
#> tensor([[ 80,  45, 150],
#>         [ 41,  19, 127],
#>         [  0,   0,  16]], dtype=torch.uint8)
# [torch.ByteTensor of size 3x3]
ft
#> tensor([[4.7644e-44, 0.0000e+00, 0.0000e+00],
#>         [0.0000e+00, 1.5414e-44, 3.2230e-44],
#>         [1.4013e-45, 5.3249e-44, 2.8026e-45]])
# [torch.FloatTensor of size 3x3]
# create a tensor with a value
torch$full(list(2L, 3L), 3.141592)
#> tensor([[3.1416, 3.1416, 3.1416],
#>         [3.1416, 3.1416, 3.1416]])

Basic Tensor Operations

Add tensors

# add a scalar to a tensor
# 3x5 matrix uniformly distributed between 0 and 1
mat0 <- torch$FloatTensor(3L, 5L)$uniform_(0L, 1L)
mat0 + 0.1
#> tensor([[0.2163, 0.4416, 0.7405, 0.6640, 0.7111],
#>         [0.4478, 0.6105, 0.3057, 1.0389, 0.5661],
#>         [0.8474, 0.8210, 0.6615, 0.3182, 0.9772]])

The expression tensor.index(m) is equivalent to tensor[m].

# add an element of tensor to a tensor
# fill a 3x5 matrix with 0.1
mat1 <- torch$FloatTensor(3L, 5L)$uniform_(0.1, 0.1)
# a vector with all ones
mat2 <- torch$FloatTensor(5L)$uniform_(1, 1)
mat1[1, 1] + mat2
#> tensor([1.1000, 1.1000, 1.1000, 1.1000, 1.1000])
# add two tensors
mat1 + mat0
#> tensor([[0.2163, 0.4416, 0.7405, 0.6640, 0.7111],
#>         [0.4478, 0.6105, 0.3057, 1.0389, 0.5661],
#>         [0.8474, 0.8210, 0.6615, 0.3182, 0.9772]])
# PyTorch add two tensors
x = torch$rand(5L, 4L)
y = torch$rand(5L, 4L)

print(x$add(y))
#> tensor([[0.8144, 1.4515, 1.2712, 0.9070],
#>         [0.5151, 0.6795, 0.8082, 0.9323],
#>         [0.9739, 0.9622, 1.1908, 0.9362],
#>         [0.9701, 1.2294, 1.4636, 0.7612],
#>         [0.9880, 0.6853, 0.4393, 0.7315]])
print(x + y)
#> tensor([[0.8144, 1.4515, 1.2712, 0.9070],
#>         [0.5151, 0.6795, 0.8082, 0.9323],
#>         [0.9739, 0.9622, 1.1908, 0.9362],
#>         [0.9701, 1.2294, 1.4636, 0.7612],
#>         [0.9880, 0.6853, 0.4393, 0.7315]])

Multiply tensor by scalar

# Multiply tensor by scalar
tensor = torch$ones(4L, dtype=torch$float64)
scalar = np$float64(4.321)
print(scalar)
#> [1] 4.321
print(torch$scalar_tensor(scalar))
#> tensor(4.3210)
(prod = torch$mul(tensor, torch$scalar_tensor(scalar)))
#> tensor([4.3210, 4.3210, 4.3210, 4.3210], dtype=torch.float64)
# short version using generics
(prod = tensor * scalar)
#> tensor([4.3210, 4.3210, 4.3210, 4.3210], dtype=torch.float64)

NumPy and PyTorch

numpy has been made available as a module in rTorch. We can call functions from numpy refrerring to it as np$_a_function. Examples:

# a 2D numpy array  
syn0 <- np$random$rand(3L, 5L)
syn0
#>           [,1]      [,2]      [,3]       [,4]      [,5]
#> [1,] 0.9038473 0.6693252 0.2982889 0.52537259 0.2291053
#> [2,] 0.6670118 0.2364839 0.2983554 0.23475955 0.2886768
#> [3,] 0.9017605 0.5691967 0.7190021 0.07707008 0.5145782
# numpy arrays of zeros
syn1 <- np$zeros(c(5L, 10L))
syn1
#>      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
#> [1,]    0    0    0    0    0    0    0    0    0     0
#> [2,]    0    0    0    0    0    0    0    0    0     0
#> [3,]    0    0    0    0    0    0    0    0    0     0
#> [4,]    0    0    0    0    0    0    0    0    0     0
#> [5,]    0    0    0    0    0    0    0    0    0     0
# add a scalar to a numpy array
syn1 = syn1 + 0.1
syn1
#>      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
#> [1,]  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1   0.1
#> [2,]  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1   0.1
#> [3,]  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1   0.1
#> [4,]  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1   0.1
#> [5,]  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1  0.1   0.1
# in numpy a multidimensional array needs to be defined with a tuple
# in R we do it with a vector
l1 <- np$ones(c(5L, 5L))
l1
#>      [,1] [,2] [,3] [,4] [,5]
#> [1,]    1    1    1    1    1
#> [2,]    1    1    1    1    1
#> [3,]    1    1    1    1    1
#> [4,]    1    1    1    1    1
#> [5,]    1    1    1    1    1
# vector-matrix multiplication
np$dot(syn0, syn1)
#>           [,1]      [,2]      [,3]      [,4]      [,5]      [,6]      [,7]
#> [1,] 0.2625939 0.2625939 0.2625939 0.2625939 0.2625939 0.2625939 0.2625939
#> [2,] 0.1725287 0.1725287 0.1725287 0.1725287 0.1725287 0.1725287 0.1725287
#> [3,] 0.2781608 0.2781608 0.2781608 0.2781608 0.2781608 0.2781608 0.2781608
#>           [,8]      [,9]     [,10]
#> [1,] 0.2625939 0.2625939 0.2625939
#> [2,] 0.1725287 0.1725287 0.1725287
#> [3,] 0.2781608 0.2781608 0.2781608
# build a numpy array from three R vectors
X <- np$array(rbind(c(1,2,3), c(4,5,6), c(7,8,9)))
X
#>      [,1] [,2] [,3]
#> [1,]    1    2    3
#> [2,]    4    5    6
#> [3,]    7    8    9
# transpose the array
np$transpose(X)
#>      [,1] [,2] [,3]
#> [1,]    1    4    7
#> [2,]    2    5    8
#> [3,]    3    6    9
# as_tensor. Modifying tensor modifies numpy object as well
a = np$array(list(1, 2, 3))
t = torch$as_tensor(a)
print(t)
#> tensor([1., 2., 3.], dtype=torch.float64)

torch$tensor(list( 1,  2,  3))
#> tensor([1., 2., 3.])
t[1L]$fill_(-1)
#> tensor(-1., dtype=torch.float64)
print(a)
#> [1] -1  2  3

Create tensors

# a random 1D tensor
ft1 <- torch$FloatTensor(np$random$rand(5L))
ft1
#> tensor([0.4738, 0.2879, 0.3424, 0.0044, 0.3120])
# tensor as a float of 64-bits
ft2 <- torch$as_tensor(np$random$rand(5L), dtype= torch$float64)
ft2
#> tensor([0.1295, 0.7139, 0.5817, 0.8095, 0.6424], dtype=torch.float64)
# convert tensor to float 16-bits
ft2_dbl <- torch$as_tensor(ft2, dtype = torch$float16)
ft2_dbl
#> tensor([0.1295, 0.7139, 0.5815, 0.8096, 0.6426], dtype=torch.float16)

Create a tensor of size (5 x 7) with uninitialized memory:

a <- torch$FloatTensor(5L, 7L)
print(a)
#> tensor([[0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00,
#>          0.0000e+00],
#>         [0.0000e+00, 5.0209e-20, 4.5586e-41, 0.0000e+00, 0.0000e+00, 0.0000e+00,
#>          0.0000e+00],
#>         [3.8194e+11, 3.0722e-41, 1.1057e-19, 0.0000e+00, 0.0000e+00, 0.0000e+00,
#>          9.4167e-43],
#>         [6.7262e-43, 9.1227e+06, 3.0722e-41, 9.1227e+06, 3.0722e-41, 9.4167e-43,
#>          0.0000e+00],
#>         [0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00, 0.0000e+00,
#>          0.0000e+00]])
# using arange to create tensor. starts from 0
v = torch$arange(9L)
(v = v$view(3L, 3L))
#> tensor([[0, 1, 2],
#>         [3, 4, 5],
#>         [6, 7, 8]])

Distributions

Initialize a tensor randomized with a normal distribution with mean=0, var=1:

a  <- torch$randn(5L, 7L)
print(a)
#> tensor([[ 2.3758, -0.4211, -1.5005,  1.1152,  0.8154, -0.6480, -2.1379],
#>         [-0.2613, -0.4025,  0.5637, -0.9903,  0.9483,  1.3798,  0.9638],
#>         [ 0.5819, -0.3537,  0.3733, -0.8580,  0.5854,  1.0156, -1.0063],
#>         [-2.2317, -0.4844, -0.1601, -0.1593,  0.8876, -0.9792,  1.9140],
#>         [-0.6835, -0.2189, -0.6588,  0.9796, -1.2463,  0.8335,  0.0454]])
print(a$size())
#> torch.Size([5, 7])

Uniform matrix

library(rTorch)

# 3x5 matrix uniformly distributed between 0 and 1
mat0 <- torch$FloatTensor(3L, 5L)$uniform_(0L, 1L)

# fill a 3x5 matrix with 0.1
mat1 <- torch$FloatTensor(3L, 5L)$uniform_(0.1, 0.1)

# a vector with all ones
mat2 <- torch$FloatTensor(5L)$uniform_(1, 1)

mat0
#> tensor([[0.7818, 0.4073, 0.6300, 0.7939, 0.6365],
#>         [0.8130, 0.7822, 0.0055, 0.0432, 0.1714],
#>         [0.1478, 0.2362, 0.7475, 0.0200, 0.3828]])
mat1
#> tensor([[0.1000, 0.1000, 0.1000, 0.1000, 0.1000],
#>         [0.1000, 0.1000, 0.1000, 0.1000, 0.1000],
#>         [0.1000, 0.1000, 0.1000, 0.1000, 0.1000]])

Binomial distribution

Binomial <- torch$distributions$binomial$Binomial

m = Binomial(100, torch$tensor(list(0 , .2, .8, 1)))
(x = m$sample())
#> tensor([  0.,  22.,  81., 100.])
m = Binomial(torch$tensor(list(list(5.), list(10.))), 
             torch$tensor(list(0.5, 0.8)))
(x = m$sample())
#> tensor([[3., 3.],
#>         [7., 8.]])

Exponential distribution

Exponential <- torch$distributions$exponential$Exponential

m = Exponential(torch$tensor(list(1.0)))
m$sample()  # Exponential distributed with rate=1
#> tensor([0.8019])

Weibull distribution

Weibull <- torch$distributions$weibull$Weibull

m = Weibull(torch$tensor(list(1.0)), torch$tensor(list(1.0)))
m$sample()  # sample from a Weibull distribution with scale=1, concentration=1
#> tensor([0.4590])

Tensor data types

# Default data type
torch$tensor(list(1.2, 3))$dtype  # default for floating point is torch.float32
#> torch.float32
# change default data type to float64
torch$set_default_dtype(torch$float64)
torch$tensor(list(1.2, 3))$dtype         # a new floating point tensor
#> torch.float64

This is a very common operation in machine learning:

# convert tensor to a numpy array
a = torch$rand(5L, 4L)
b = a$numpy()
print(b)
#>           [,1]       [,2]        [,3]      [,4]
#> [1,] 0.2332372 0.70280876 0.342186279 0.9221623
#> [2,] 0.8590770 0.41800424 0.819966310 0.7328199
#> [3,] 0.3597716 0.76391045 0.606901012 0.6638108
#> [4,] 0.9411453 0.77198088 0.495232307 0.3418834
#> [5,] 0.7322847 0.07950783 0.006881642 0.3518654
# convert a numpy array to a tensor
np_a = np$array(c(c(3, 4), c(3, 6)))
t_a = torch$from_numpy(np_a)
print(t_a)
#> tensor([3., 4., 3., 6.])

Tensor resizing

x = torch$randn(2L, 3L)            # Size 2x3
y = x$view(6L)                    # Resize x to size 6
z = x$view(-1L, 2L)                # Size 3x2
print(y)
#> tensor([-1.0349,  0.5687,  0.2354, -0.2582, -1.3115, -0.3551])
print(z)
#> tensor([[-1.0349,  0.5687],
#>         [ 0.2354, -0.2582],
#>         [-1.3115, -0.3551]])

concatenate tensors

# concatenate tensors
x = torch$randn(2L, 3L)
print(x)
#> tensor([[-1.1337, -0.8079, -1.3109],
#>         [ 1.0822,  0.1185,  0.1843]])

# concatenate tensors by dim=0"
torch$cat(list(x, x, x), 0L)
#> tensor([[-1.1337, -0.8079, -1.3109],
#>         [ 1.0822,  0.1185,  0.1843],
#>         [-1.1337, -0.8079, -1.3109],
#>         [ 1.0822,  0.1185,  0.1843],
#>         [-1.1337, -0.8079, -1.3109],
#>         [ 1.0822,  0.1185,  0.1843]])

# concatenate tensors by dim=1
torch$cat(list(x, x, x), 1L)
#> tensor([[-1.1337, -0.8079, -1.3109, -1.1337, -0.8079, -1.3109, -1.1337, -0.8079,
#>          -1.3109],
#>         [ 1.0822,  0.1185,  0.1843,  1.0822,  0.1185,  0.1843,  1.0822,  0.1185,
#>           0.1843]])
# 0 1 2
# 3 4 5
# 6 7 8
v = torch$arange(9L)
(v = v$view(3L, 3L))
#> tensor([[0, 1, 2],
#>         [3, 4, 5],
#>         [6, 7, 8]])

Reshape tensors

# ----- Reshape tensors -----
img <- torch$ones(3L, 28L, 28L)
print(img$size())
#> torch.Size([3, 28, 28])

img_chunks <- torch$chunk(img, chunks = 3L, dim = 0L)
print(length(img_chunks))
#> [1] 3

# 1st chunk member
img_chunk_1 <- img_chunks[[1]]
print(img_chunk_1$size())
#> torch.Size([1, 28, 28])
print(img_chunk_1$sum())
#> tensor(784.)

# 2nd chunk member
img_chunk_1 <- img_chunks[[2]]
print(img_chunk_1$size())
#> torch.Size([1, 28, 28])
print(img_chunk_1$sum())
#> tensor(784.)


# index_select. get layer 1
indices = torch$tensor(c(0L))
img2 <- torch$index_select(img, dim = 0L, index = indices)
print(img2$size())
#> torch.Size([1, 28, 28])
print(img2$sum())
#> tensor(784.)

# index_select. get layer 2
indices = torch$tensor(c(1L))
img2 <- torch$index_select(img, dim = 0L, index = indices)
print(img2$size())
#> torch.Size([1, 28, 28])
print(img2$sum())
#> tensor(784.)

# index_select. get layer 3
indices = torch$tensor(c(2L))
img2 <- torch$index_select(img, dim = 0L, index = indices)
print(img2$size())
#> torch.Size([1, 28, 28])
print(img2$sum())
#> tensor(784.)

Special tensors

Identity matrix

# identity matrix
eye = torch$eye(3L)              # Create an identity 3x3 tensor
print(eye)
#> tensor([[1., 0., 0.],
#>         [0., 1., 0.],
#>         [0., 0., 1.]])

Ones

(v = torch$ones(10L))              # A tensor of size 10 containing all ones
#> tensor([1., 1., 1., 1., 1., 1., 1., 1., 1., 1.])
(v = torch$ones(2L, 1L, 2L, 1L))      # Size 2x1x2x1
#> tensor([[[[1.],
#>           [1.]]],
#> 
#> 
#>         [[[1.],
#>           [1.]]]])
v = torch$ones_like(eye)     # A tensor with same shape as eye. Fill it with 1.
v
#> tensor([[1., 1., 1.],
#>         [1., 1., 1.],
#>         [1., 1., 1.]])

Zeros

(z = torch$zeros(10L))             # A tensor of size 10 containing all zeros
#> tensor([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])

Tensor fill

(v = torch$ones(3L, 3L))
#> tensor([[1., 1., 1.],
#>         [1., 1., 1.],
#>         [1., 1., 1.]])
v[1L, ]$fill_(2L)         # fill row 1 with 2s
#> tensor([2., 2., 2.])
v[2L, ]$fill_(3L)         # fill row 2 with 3s
#> tensor([3., 3., 3.])
print(v)
#> tensor([[2., 2., 2.],
#>         [3., 3., 3.],
#>         [1., 1., 1.]])
# Initialize Tensor with a range of value
v = torch$arange(10L)             # similar to range(5) but creating a Tensor
(v = torch$arange(0L, 10L, step = 1L))  # Size 5. Similar to range(0, 5, 1)
#> tensor([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

Initialize a linear or log scale Tensor

# Initialize a linear or log scale Tensor

# Create a Tensor with 10 linear points for (1, 10) inclusively
(v = torch$linspace(1L, 10L, steps = 10L)) 
#> tensor([ 1.,  2.,  3.,  4.,  5.,  6.,  7.,  8.,  9., 10.])

# Size 5: 1.0e-10 1.0e-05 1.0e+00, 1.0e+05, 1.0e+10
(v = torch$logspace(start=-10L, end = 10L, steps = 5L)) 
#> tensor([1.0000e-10, 1.0000e-05, 1.0000e+00, 1.0000e+05, 1.0000e+10])

Inplace / Out-of-place

a$fill_(3.5)
#> tensor([[3.5000, 3.5000, 3.5000, 3.5000],
#>         [3.5000, 3.5000, 3.5000, 3.5000],
#>         [3.5000, 3.5000, 3.5000, 3.5000],
#>         [3.5000, 3.5000, 3.5000, 3.5000],
#>         [3.5000, 3.5000, 3.5000, 3.5000]])
# a has now been filled with the value 3.5

# add a scalar to a tensor
b <- a$add(4.0)

# a is still filled with 3.5
# new tensor b is returned with values 3.5 + 4.0 = 7.5

print(a)
#> tensor([[3.5000, 3.5000, 3.5000, 3.5000],
#>         [3.5000, 3.5000, 3.5000, 3.5000],
#>         [3.5000, 3.5000, 3.5000, 3.5000],
#>         [3.5000, 3.5000, 3.5000, 3.5000],
#>         [3.5000, 3.5000, 3.5000, 3.5000]])
print(b)
#> tensor([[7.5000, 7.5000, 7.5000, 7.5000],
#>         [7.5000, 7.5000, 7.5000, 7.5000],
#>         [7.5000, 7.5000, 7.5000, 7.5000],
#>         [7.5000, 7.5000, 7.5000, 7.5000],
#>         [7.5000, 7.5000, 7.5000, 7.5000]])
# this will throw an error because we don't still have a function for assignment
a[1, 1] <- 7.7
print(a)
# Error in a[1, 1] <- 7.7 : object of type 'environment' is not subsettable

Some operations likenarrow do not have in-place versions, and hence, .narrow_ does not exist. Similarly, some operations like fill_ do not have an out-of-place version, so .fill does not exist.

# a[[0L, 3L]]
a[1, 4]
#> tensor(3.5000)

Access to tensor elements

# replace an element at position 0, 0
(new_tensor = torch$Tensor(list(list(1, 2), list(3, 4))))
#> tensor([[1., 2.],
#>         [3., 4.]])

print(new_tensor[1L, 1L])
#> tensor(1.)
new_tensor[1L, 1L]$fill_(5)
#> tensor(5.)
print(new_tensor)   # tensor([[ 5.,  2.],[ 3.,  4.]])
#> tensor([[5., 2.],
#>         [3., 4.]])
# access an element at position 1, 0
print(new_tensor[2L, 1L])           # tensor([ 3.])
#> tensor(3.)
print(new_tensor[2L, 1L]$item())    # 3.
#> [1] 3
# Select indices
x = torch$randn(3L, 4L)
print(x)
#> tensor([[-0.0333, -0.1179,  0.0561,  1.4256],
#>         [ 1.0540, -0.2959, -0.8004, -1.0370],
#>         [-0.7412, -0.1924, -0.2997, -2.1003]])

# Select indices, dim=0
indices = torch$tensor(list(0L, 2L))
torch$index_select(x, 0L, indices)
#> tensor([[-0.0333, -0.1179,  0.0561,  1.4256],
#>         [-0.7412, -0.1924, -0.2997, -2.1003]])

# "Select indices, dim=1
torch$index_select(x, 1L, indices)
#> tensor([[-0.0333,  0.0561],
#>         [ 1.0540, -0.8004],
#>         [-0.7412, -0.2997]])
# Take by indices
src = torch$tensor(list(list(4, 3, 5),
                        list(6, 7, 8)) )
print(src)
#> tensor([[4., 3., 5.],
#>         [6., 7., 8.]])
print( torch$take(src, torch$tensor(list(0L, 2L, 5L))) )
#> tensor([4., 5., 8.])

Tensor operations

cross product

m1 = torch$ones(3L, 5L)
m2 = torch$ones(3L, 5L)
v1 = torch$ones(3L)
# Cross product
# Size 3x5
(r = torch$cross(m1, m2))
#> tensor([[0., 0., 0., 0., 0.],
#>         [0., 0., 0., 0., 0.],
#>         [0., 0., 0., 0., 0.]])

Dot product

# Dot product of 2 tensors
# Dot product of 2 tensors

p <- torch$Tensor(list(4L, 2L))
q <- torch$Tensor(list(3L, 1L))                   

(r = torch$dot(p, q)) # 14
#> tensor(14.)
(r <- p %.*% q)
#> tensor(14.)

Logical operations

m0 = torch$zeros(3L, 5L)
m1 = torch$ones(3L, 5L)
m2 = torch$eye(3L, 5L)

print(m1 == m0)
#> tensor([[False, False, False, False, False],
#>         [False, False, False, False, False],
#>         [False, False, False, False, False]], dtype=torch.bool)
print(m1 != m1)
#> tensor([[False, False, False, False, False],
#>         [False, False, False, False, False],
#>         [False, False, False, False, False]], dtype=torch.bool)
print(m2 == m2)
#> tensor([[True, True, True, True, True],
#>         [True, True, True, True, True],
#>         [True, True, True, True, True]], dtype=torch.bool)
# AND
m1 & m1
#> tensor([[True, True, True, True, True],
#>         [True, True, True, True, True],
#>         [True, True, True, True, True]], dtype=torch.bool)
# OR
m0 | m2
#> tensor([[ True, False, False, False, False],
#>         [False,  True, False, False, False],
#>         [False, False,  True, False, False]], dtype=torch.bool)
# OR
m1 | m2
#> tensor([[True, True, True, True, True],
#>         [True, True, True, True, True],
#>         [True, True, True, True, True]], dtype=torch.bool)
# all_boolean <- function(x) {
#   # convert tensor of 1s and 0s to a unique boolean
#   as.logical(torch$all(x)$numpy())
# }

# tensor is less than
A <- torch$ones(60000L, 1L, 28L, 28L)
C <- A * 0.5

# is C < A
all(torch$lt(C, A))
#> tensor(1, dtype=torch.uint8)
all(C < A)
#> tensor(1, dtype=torch.uint8)
# is A < C
all(A < C)
#> tensor(0, dtype=torch.uint8)
# tensor is greater than
A <- torch$ones(60000L, 1L, 28L, 28L)
D <- A * 2.0
all(torch$gt(D, A))
#> tensor(1, dtype=torch.uint8)
all(torch$gt(A, D))
#> tensor(0, dtype=torch.uint8)
# tensor is less than or equal
A1 <- torch$ones(60000L, 1L, 28L, 28L)
all(torch$le(A1, A1))
#> tensor(1, dtype=torch.uint8)
all(A1 <= A1)
#> tensor(1, dtype=torch.uint8)

# tensor is greater than or equal
A0 <- torch$zeros(60000L, 1L, 28L, 28L)
all(torch$ge(A0, A0))
#> tensor(1, dtype=torch.uint8)
all(A0 >= A0)
#> tensor(1, dtype=torch.uint8)

all(A1 >= A0)
#> tensor(1, dtype=torch.uint8)
all(A1 <= A0)
#> tensor(0, dtype=torch.uint8)

Logical NOT

all_true <- torch$BoolTensor(list(TRUE, TRUE, TRUE, TRUE))
all_true
#> tensor([True, True, True, True], dtype=torch.bool)

# logical NOT
not_all_true <- !all_true
not_all_true
#> tensor([False, False, False, False], dtype=torch.bool)
diag <- torch$eye(5L)
diag
#> tensor([[1., 0., 0., 0., 0.],
#>         [0., 1., 0., 0., 0.],
#>         [0., 0., 1., 0., 0.],
#>         [0., 0., 0., 1., 0.],
#>         [0., 0., 0., 0., 1.]])

# logical NOT
not_diag <- !diag

# convert to integer
not_diag$to(dtype=torch$uint8)
#> tensor([[0, 1, 1, 1, 1],
#>         [1, 0, 1, 1, 1],
#>         [1, 1, 0, 1, 1],
#>         [1, 1, 1, 0, 1],
#>         [1, 1, 1, 1, 0]], dtype=torch.uint8)

About

PyTorch bindings for R

Resources

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md

Stars

Watchers

Forks

Packages

No packages published

Languages

  • R 97.8%
  • Python 2.2%