Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Feat (core): use runtime parameter for scale #1037

Merged
merged 7 commits into from
Nov 7, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 4 additions & 2 deletions src/brevitas/core/scaling/runtime.py
Original file line number Diff line number Diff line change
Expand Up @@ -60,8 +60,10 @@ def __init__(

@brevitas.jit.script_method
def forward(
self, ignored: torch.Tensor, threshold: Optional[torch.Tensor] = None) -> torch.Tensor:
stats = self.parameter_list_stats()
self,
x: Optional[torch.Tensor],
threshold: Optional[torch.Tensor] = None) -> torch.Tensor:
stats = self.parameter_list_stats(x)
if threshold is None:
threshold = torch.ones(1).type_as(stats)
return self.stats_scaling_impl(stats, threshold)
Expand Down
6 changes: 3 additions & 3 deletions src/brevitas/core/scaling/standalone.py
Original file line number Diff line number Diff line change
Expand Up @@ -241,17 +241,17 @@ def __init__(
self.value = Parameter(torch.full(scaling_shape, 1.0, dtype=dtype, device=device))

@brevitas.jit.script_method
def forward(self, ignored: Tensor, threshold: Optional[Tensor] = None) -> Tensor:
def forward(self, x: Tensor, threshold: Optional[Tensor] = None) -> Tensor:
if threshold is None:
threshold = torch.ones(1).type_as(ignored)
threshold = torch.ones(1).type_as(x)
if self.init_done:
threshold = self.stats_scaling_impl.restrict_clamp_threshold(
self.restrict_threshold_pre(threshold))
value = abs_binary_sign_grad(self.stats_scaling_impl.restrict_clamp_scaling(self.value))
value = value / threshold
return value
else:
stats = self.parameter_list_stats()
stats = self.parameter_list_stats(x)
# workaround to avoid find_ununsed_parameter=True in DDP
stats = stats + 0. * self.value
if self.local_loss_mode:
Expand Down
15 changes: 11 additions & 4 deletions src/brevitas/core/stats/stats_wrapper.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,7 @@
from brevitas.core.utils import inplace_tensor_mul

from .view_wrapper import _ViewCatParameterWrapper
from .view_wrapper import _ViewParameter
from .view_wrapper import _ViewParameterWrapper

DEFAULT_MOMENTUM = 0.1
Expand Down Expand Up @@ -96,8 +97,12 @@ def __init__(
super(_ParameterListStats, self).__init__()

self.stats_input_concat_dim = stats_input_concat_dim
self.first_tracked_param = _ViewParameterWrapper(
tracked_parameter_list[0], stats_input_view_shape_impl)
if len(tracked_parameter_list) >= 1:
self.first_tracked_param = _ViewParameterWrapper(
tracked_parameter_list[0], stats_input_view_shape_impl)
else:
self.first_tracked_param = _ViewParameter(stats_input_view_shape_impl)

if len(tracked_parameter_list) > 1:
extra_list = [
_ViewCatParameterWrapper(
Expand All @@ -109,10 +114,12 @@ def __init__(
self.stats = _Stats(stats_impl, stats_output_shape)

@brevitas.jit.script_method
def forward(self) -> torch.Tensor:
stats_input = self.first_tracked_param()
def forward(self, x: Optional[torch.Tensor] = None) -> torch.Tensor:
if self.extra_tracked_params_list is not None:
stats_input = self.first_tracked_param(None)
for extra_tracked_param in self.extra_tracked_params_list:
stats_input = extra_tracked_param(stats_input)
else:
stats_input = self.first_tracked_param(x)
out = self.stats(stats_input)
return out
21 changes: 19 additions & 2 deletions src/brevitas/core/stats/view_wrapper.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,8 @@
# Copyright (C) 2023, Advanced Micro Devices, Inc. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause

from typing import Optional

import torch
from torch import Tensor
from torch.nn import Module
Expand All @@ -19,8 +21,12 @@ def __init__(self, parameter: Parameter, view_shape_impl: Module) -> None:
self.view_shape_impl = view_shape_impl

@brevitas.jit.script_method
def forward(self) -> Tensor:
return self.view_shape_impl(self.parameter)
def forward(self, x: Optional[Tensor]) -> Tensor:
if x is not None:
parameter = x
else:
parameter = self.parameter
return self.view_shape_impl(parameter)

def _load_from_state_dict(
self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys,
Expand All @@ -39,6 +45,17 @@ def state_dict(self, destination=None, prefix='', keep_vars=False):
return output_dict


class _ViewParameter(brevitas.jit.ScriptModule):

def __init__(self, view_shape_impl: Module) -> None:
super(_ViewParameter, self).__init__()
self.view_shape_impl = view_shape_impl

@brevitas.jit.script_method
def forward(self, x: Tensor) -> Tensor:
return self.view_shape_impl(x)


class _ViewCatParameterWrapper(brevitas.jit.ScriptModule):
__constants__ = ['cat_dim']

Expand Down
4 changes: 2 additions & 2 deletions src/brevitas/core/zero_point.py
Original file line number Diff line number Diff line change
Expand Up @@ -82,7 +82,7 @@ def __init__(

@brevitas.jit.script_method
def forward(self, x: Tensor, scale: Tensor, bit_width: Tensor) -> torch.Tensor:
stats = self.parameter_list_stats()
stats = self.parameter_list_stats(x)
return self.scale_shift_zero_point(-stats, scale, bit_width)


Expand Down Expand Up @@ -266,7 +266,7 @@ def forward(self, x: Tensor, scale: Tensor, bit_width: Tensor) -> torch.Tensor:
value = self.scale_shift_zero_point(value, scale, bit_width)
return value
else:
stats = self.parameter_list_stats()
stats = self.parameter_list_stats(x)
# workaround to avoid find_ununsed_parameter=True in DDP
stats = stats + 0. * self.value
if self.local_loss_mode:
Expand Down
2 changes: 2 additions & 0 deletions src/brevitas_examples/llm/main.py
Original file line number Diff line number Diff line change
Expand Up @@ -285,6 +285,8 @@ def main(args):

model = offload_model(model)

model(**calibration_loader[0])

if args.act_calibration:
print("Apply act calibration...")
apply_calibration(model, calibration_loader)
Expand Down
Loading