Skip to content

An attempt at dataset labeling with Large Multimodal Models

License

Notifications You must be signed in to change notification settings

XuxinBlue/LMM_caption

Repository files navigation

Introduction

这个项目是多模态大模型来标注图片数据集的一次尝试,大模型使用的是来自阿里的Qwen_vl_chat(基于QWen-7B).

本次大模型标注的思路主要有4部分,首先s0阶段是前置数据处理阶段,包括s0_0: img检索写入txt;s0_1: 大json拆分单个对应json;s0_2: img分成n份来准备进行多进程并行推理;其次是简单处理s1阶段, 对输入json进行部分信息的简单复制,直接保存不必要更改的信息;然后是推理阶段s2, 多模态大模型标注需变更的信息,又分成2部分,时间信息和物体动作信息, 依据prompt1/2来区分;最后是数据后处理阶段,s3: 合并所有所需json.

Structure

|-- caption_run
|   |-- error.txt
|   |-- qwen_vl_chat.py
|   |-- s0-s1-s3.ipynb
|   |-- s2_parallel_run.sh 
|-- json_dir 
|   |-- dataset's logs
|   |-- dataset's final json
|-- origin_input
|   |-- dataset.json
|   |-- dataset
|   |-- dataset.txt 
|-- split_file
|   |-- dataset's split
|   |-- dataset.txt 
|-- others 
|   |-- check.ipynb

其中, origin_input: 数据集, 数据集的总json, 数据集的路径txt;split_file: 数据集分成的n份;json_dir: 运行log, 输出的json;caption_run: 运行文件;others:其他文件.

Installation

  • Python Env
conda create -n modelscope python=3.8
conda activate modelscope
  • Pytorch
pip3 install torch torchvision torchaudio
  • Pip
pip install modelscope

Inference

项目整体运行步骤:

第1步在jupyter中按顺序运行s0, s1文件,分别是:s0_0_img_retrival, s0_1_split_json, s0_2_split_img, s1_info_copy;

第2步运行s2_parallel_run.sh脚本,多进程使用gpu进行模型infer,最终执行文件是qwen_vl_chat.py;

bash s2_parallel_run.sh

第3步在jupyter中运行s3_merge_json, 合并json.

TODO

  • 更换更具推理性价比的多模态大模型

About

An attempt at dataset labeling with Large Multimodal Models

Resources

License

Stars

Watchers

Forks

Packages

No packages published