Skip to content

Pointcept: a codebase for point cloud perception research. Latest works: MSC (CVPR'23), CeCo (CVPR'23), PTv2 (NeurIPS'22)

License

Notifications You must be signed in to change notification settings

YOOOOOL/Pointcept

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

pointcept

Pointcept is a powerful and flexible codebase for point cloud perception research. It is also an official implementation of the following paper:

  • Masked Scene Contrast: A Scalable Framework for Unsupervised 3D Representation Learning
    Xiaoyang Wu, Xin Wen, Xihui Liu, Hengshuang Zhao
    IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2023
    [ Pretrain ] [ MSC ] - [ arXiv ] [ Bib ] → soon

  • Understanding Imbalanced Semantic Segmentation Through Neural Collapse (3D Part)
    Zhisheng Zhong*, Jiequan Cui*, Yibo Yang*, Xiaoyang Wu, Xiaojuan Qi, Xiangyu Zhang, Jiaya Jia
    IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2023
    [ SemSeg ] [ CeCo ] - [ arXiv ] [ Bib ] [ 2D Part ] → soon

  • Learning Context-aware Classifier for Semantic Segmentation (3D Part)
    Zhuotao Tian, Jiequan Cui, Li Jiang, Xiaojuan Qi, Xin Lai, Yixin Chen, Shu Liu, Jiaya Jia
    AAAI Conference on Artificial Intelligence (AAAI) 2023 - Oral
    [ SemSeg ] [ CAC ] - [ arXiv ] [ Bib ] [ 2D Part ] → soon

  • Point Transformer V2: Grouped Vector Attention and Partition-based Pooling
    Xiaoyang Wu, Yixing Lao, Li Jiang, Xihui Liu, Hengshuang Zhao
    Conference on Neural Information Processing Systems (NeurIPS) 2022
    [ Backbone ] [ PTv2 ] - [ arXiv ] [ Bib ] → here

  • Point Transformer
    Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip Torr, Vladlen Koltun
    IEEE International Conference on Computer Vision (ICCV) 2021 - Oral
    [ Backbone ] [ PTv1 ] - [ arXiv ] [ Bib ] → here

Additionally, Pointcept integrates the following excellent work: MinkUNet (here), SpUNet (here), Stratified Transformer (here), Mix3d (here), PointGroup (here), PointContrast, ContrastiveSceneContexts, and supports the following datasets: ScanNet, ScanNet200, S3DIS, ArkitScene, Semantic KITTI, ModelNet40.

Highlights

  • Mar, 2023: We released our codebase, Pointcept, a highly potent tool for point cloud representation learning and perception. We welcome new work to join the Pointcept family and highly recommend reading Quick Start before starting your trail.
  • Feb, 2023: MSC and CeCo accepted by CVPR 2023. MSC is a highly efficient and effective pretraining framework that facilitates cross-dataset large-scale pretraining, while CeCo is a segmentation method specifically designed for long-tail datasets. Both approaches are compatible with all existing backbone models in our codebase, and we will soon make the code available for public use.
  • Jan, 2023: CAC, oral work of AAAI 2023, has expanded its 3D result with the incorporation of Pointcept. This addition will allow CAC to serve as a pluggable segmentor within our codebase.
  • Sep, 2022: PTv2 accepted by NeurIPS 2022. It is a continuation of the Point Transformer. The proposed GVA theory can apply to most existing attention mechanisms, while Grid Pooling is also a practical addition to existing pooling methods.

Overview

Installation

Requirements

  • Ubuntu: 18.04 or higher
  • CUDA: 11.3 or higher
  • PyTorch: 1.10.0 or higher

Conda Environment

conda create -n pointcept python=3.8 -y
conda activate pointcept
conda install ninja -y
# Choose version you want here: https://pytorch.org/get-started/previous-versions/
conda install pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 cudatoolkit=11.3 -c pytorch -y
conda install h5py pyyaml -c anaconda -y
conda install sharedarray tensorboard tensorboardx yapf addict einops scipy plyfile termcolor timm -c conda-forge -y
conda install pytorch-cluster pytorch-scatter pytorch-sparse -c pyg -y
pip install torch-geometric

# spconv (SparseUNet)
# refer https://github.com/traveller59/spconv
pip install spconv-cu113

# PTv1 & PTv2 or precise eval
cd libs/pointops
# usual
python setup.py install
# docker & multi GPU arch
TORCH_CUDA_ARCH_LIST="ARCH LIST" python  setup.py install
# e.g. 7.5: RTX 3000; 8.0: a100 More available in: https://developer.nvidia.com/cuda-gpus
TORCH_CUDA_ARCH_LIST="7.5 8.0" python  setup.py install
cd ../..

# Open3D (visualization, optional)
pip install open3d

Data Preparation

ScanNet v2

The preprocessing support semantic and instance segmentation for both ScanNet20, ScanNet200 and ScanNet Data Efficient.

  • Download the ScanNet v2 dataset.
  • Run preprocessing code for raw ScanNet as follows:
# RAW_SCANNET_DIR: the directory of downloaded ScanNet v2 raw dataset.
# PROCESSED_SCANNET_DIR: the directory of processed ScanNet dataset (output dir).
python pointcept/datasets/preprocessing/scannet/preprocess_scannet.py --dataset_root ${RAW_SCANNET_DIR} --output_root ${PROCESSED_SCANNET_DIR}
  • (Optional) Download ScanNet Data Efficient files:
# download-scannet.py is the official download script
# or follow instruction here: https://kaldir.vc.in.tum.de/scannet_benchmark/data_efficient/documentation#download
python download-scannet.py --data_efficient -o ${RAW_SCANNET_DIR}
# unzip downloads
cd ${RAW_SCANNET_DIR}/tasks
unzip limited-annotation-points.zip
unzip limited-bboxes.zip
unzip limited-reconstruction-scenes.zip
# copy files to processed dataset folder
cp -r ${RAW_SCANNET_DIR}/tasks ${PROCESSED_SCANNET_DIR}
  • Link processed dataset to codebase:
# PROCESSED_SCANNET_DIR: the directory of processed ScanNet dataset.
mkdir data
ln -s ${RAW_SCANNET_DIR} ${CODEBASE_DIR}/data/scannet

S3DIS

  • Download S3DIS data by filling this Google form. Download the Stanford3dDataset_v1.2.zip file and unzip it.
  • Run preprocessing code for S3DIS as follows:
# S3DIS_DIR: the directory of downloaded Stanford3dDataset_v1.2 dataset.
# RAW_S3DIS_DIR: the directory of Stanford2d3dDataset_noXYZ dataset. (optional, for parsing normal)
# PROCESSED_S3DIS_DIR: the directory of processed S3DIS dataset (output dir).

# S3DIS without aligned angle
python pointcept/datasets/preprocessing/s3dis/preprocess_s3dis.py --dataset_root ${S3DIS_DIR} --output_root ${PROCESSED_S3DIS_DIR}
# S3DIS with aligned angle (our old codebase choice)
python pointcept/datasets/preprocessing/s3dis/preprocess_s3dis.py --dataset_root ${S3DIS_DIR} --output_root ${PROCESSED_S3DIS_DIR} --align_angle
# S3DIS with normal vector (our new choice)
python pointcept/datasets/preprocessing/s3dis/preprocess_s3dis.py --dataset_root ${S3DIS_DIR} --output_root ${PROCESSED_S3DIS_DIR} --raw_root ${RAW_S3DIS_DIR} --parse_normal
python pointcept/datasets/preprocessing/s3dis/preprocess_s3dis.py --dataset_root ${S3DIS_DIR} --output_root ${PROCESSED_S3DIS_DIR} --raw_root ${RAW_S3DIS_DIR} --align_angle --parse_normal
  • Link processed dataset to codebase.
# PROCESSED_S3DIS_DIR: the directory of processed S3DIS dataset.
mkdir data
ln -s ${RAW_S3DIS_DIR} ${CODEBASE_DIR}/data/s3dis

Semantic KITTI

# SEMANTIC_KITTI_DIR: the directory of Semantic KITTI dataset.
mkdir -p data
ln -s ${SEMANTIC_KITTI_DIR} ${CODEBASE_DIR}/data/semantic_kitti

ModelNet

mkdir -p data
ln -s ${MODELNET_DIR} ${CODEBASE_DIR}/data/modelnet40_normal_resampled

Quick Start

Training

Train from scratch. The training processing is based on configs in configs folder. The training script will generate an experiment folder in exp folder and backup essential code in the experiment folder. Training config, log, tensorboard and checkpoints will also be saved into the experiment folder during the training process.

export CUDA_VISIBLE_DEVICES=${CUDA_VISIBLE_DEVICES}
# Script (Recommended)
sh scripts/train.sh -p ${INTERPRETER_PATH} -g ${NUM_GPU} -d ${DATASET_NAME} -c ${CONFIG_NAME} -n ${EXP_NAME}
# Direct
export PYTHONPATH=./
python tools/train.py --config-file ${CONFIG_PATH} --num-gpus ${NUM_GPU} --options save_path=${SAVE_PATH}

For example:

# By script (Recommended)
# -p is default set as python and can be ignored
sh scripts/train.sh -p python -d scannet -c semseg-ptv2m2-0-base -n semseg-ptv2m2-0-base
# Direct
export PYTHONPATH=./
python tools/train.py --config-file configs/scannet/semseg-pt-v2m2-0-base.py --options save_path=exp/scannet/semseg-ptv2m2-0-base

Resume training from checkpoint. If the training process is interrupted by accident, the following script can resume training from a given checkpoint.

export CUDA_VISIBLE_DEVICES=${CUDA_VISIBLE_DEVICES}
# Script (Recommended)
# simply add "-r true"
sh scripts/train.sh -p ${INTERPRETER_PATH} -g ${NUM_GPU} -d ${DATASET_NAME} -c ${CONFIG_NAME} -n ${EXP_NAME} -r true
# Direct
export PYTHONPATH=./
python tools/train.py --config-file ${CONFIG_PATH} --num-gpus ${NUM_GPU} --options save_path=${SAVE_PATH} resume=True weight=${CHECKPOINT_PATH}

Testing

During training, model evaluation is performed on point clouds after grid sampling (voxelization), providing an initial assessment of model performance. However, to obtain precise evaluation results, testing is essential. The testing process involves subsampling a dense point cloud into a sequence of voxelized point clouds, ensuring comprehensive coverage of all points. These sub-results are then predicted and collected to form a complete prediction of the entire point cloud. This approach yields higher evaluation results compared to simply mapping/interpolating the prediction. In addition, our testing code supports TTA (test time augmentation) testing, which further enhances the stability of evaluation performance. (Currently only support testing on a single GPU, I might add support to multi-gpus testing in the future version.)

# By script (Based on experiment folder created by training script)
sh scripts/test.sh -p ${INTERPRETER_PATH} -d ${DATASET_NAME} -n ${EXP_NAME} -w ${CHECKPOINT_NAME}
# Direct
export PYTHONPATH=./
python tools/test.py --config-file ${CONFIG_PATH} --options save_path=${SAVE_PATH} weight=${CHECKPOINT_PATH}

For example:

# By script (Based on experiment folder created by training script)
# -p is default set as python and can be ignored
# -w is default set as model_best and can be ignored
sh scripts/test.sh -p python -d scannet -n semseg-ptv2m2-0-base -w model_best
# Direct
export PYTHONPATH=./
python tools/test.py --config-file configs/scannet/semseg-pt-v2m2-0-base.py --options save_path=exp/scannet/semseg-ptv2m2-0-base weight=exp/scannet/semseg-ptv2m2-0-base/models/model_best.pth

The TTA can be disabled by replace data.test.test_cfg.aug_transform = [...] with:

data = dict(
    train = dict(...),
    val = dict(...),
    test = dict(
        ...,
        test_cfg = dict(
            ...,
            aug_transform = [
                [dict(type="RandomRotateTargetAngle", angle=[0], axis="z", center=[0, 0, 0], p=1)]
            ]
        )
    )
)

Offset

Offset is the separator of point clouds in batch data, and it is similar to the concept of Batch in PyG. A visual illustration of batch and offset is as follows:

pointcept

Model Zoo

1. Semantic Segmentation (Backbones)

SparseUNet

Pointcept provides SparseUNet implemented by SpConv and MinkowskiEngine. The SpConv version is recommended since SpConv is easy to install and faster than MinkowskiEngine. Meanwhile, SpConv is also widely applied in outdoor perception.

  • SpConv (recommend)

The SpConv version SparseUNet in the codebase was fully rewrite from MinkowskiEngine version, example running script is as follows:

# ScanNet val
sh scripts/train.sh -g 4 -d scannet -c semseg-spunet-v1m1-0-base -n semseg-spunet-v1m1-0-base
# ScanNet200
sh scripts/train.sh -g 4 -d scannet200 -c semseg-spunet-v1m1-0-base -n semseg-spunet-v1m1-0-base
# S3DIS
sh scripts/train.sh -g 4 -d s3dis -c semseg-spunet-v1m1-0-base -n semseg-spunet-v1m1-0-base
# S3DIS (with normal)
sh scripts/train.sh -g 4 -d s3dis -c semseg-spunet-v1m1-0-cn-base -n semseg-spunet-v1m1-0-cn-base
# Semantic-KITTI
sh scripts/train.sh -g 2 -d semantic-kitti -c semseg-spunet-v1m1-0-base -n semseg-spunet-v1m1-0-base
# ModelNet40
sh scripts/train.sh -g 2 -d modelnet40 -c cls-spunet-v1m1-0-base -n cls-spunet-v1m1-0-base

# ScanNet Data Efficient
sh scripts/train.sh -g 4 -d scannet -c semseg-spunet-v1m1-2-efficient-la20 -n semseg-spunet-v1m1-2-efficient-la20
sh scripts/train.sh -g 4 -d scannet -c semseg-spunet-v1m1-2-efficient-la50 -n semseg-spunet-v1m1-2-efficient-la50
sh scripts/train.sh -g 4 -d scannet -c semseg-spunet-v1m1-2-efficient-la100 -n semseg-spunet-v1m1-2-efficient-la100
sh scripts/train.sh -g 4 -d scannet -c semseg-spunet-v1m1-2-efficient-la200 -n semseg-spunet-v1m1-2-efficient-la200
sh scripts/train.sh -g 4 -d scannet -c semseg-spunet-v1m1-2-efficient-lr1 -n semseg-spunet-v1m1-2-efficient-lr1
sh scripts/train.sh -g 4 -d scannet -c semseg-spunet-v1m1-2-efficient-lr5 -n semseg-spunet-v1m1-2-efficient-lr5
sh scripts/train.sh -g 4 -d scannet -c semseg-spunet-v1m1-2-efficient-lr10 -n semseg-spunet-v1m1-2-efficient-lr10
sh scripts/train.sh -g 4 -d scannet -c semseg-spunet-v1m1-2-efficient-lr20 -n semseg-spunet-v1m1-2-efficient-lr20

# Profile model run time
sh scripts/train.sh -g 4 -d scannet -c semseg-spunet-v1m1-0-enable-profiler -n semseg-spunet-v1m1-0-enable-profiler
  • MinkowskiEngine

The MinkowskiEngine version SparseUNet in the codebase was modified from original MinkowskiEngine repo, and example running script is as follows:

  1. Install MinkowskiEngine, refer https://github.com/NVIDIA/MinkowskiEngine
  2. Training with the following example scripts:
# Uncomment "# from .sparse_unet import *" in "pointcept/models/__init__.py"
# Uncomment "# from .mink_unet import *" in "pointcept/models/sparse_unet/__init__.py"
# ScanNet
sh scripts/train.sh -g 4 -d scannet -c semseg-minkunet34c-0-base -n semseg-minkunet34c-0-base
# ScanNet200
sh scripts/train.sh -g 4 -d scannet200 -c semseg-minkunet34c-0-base -n semseg-minkunet34c-0-base
# S3DIS
sh scripts/train.sh -g 4 -d s3dis -c semseg-minkunet34c-0-base -n semseg-minkunet34c-0-base
# Semantic-KITTI
sh scripts/train.sh -g 2 -d semantic-kitti -c semseg-minkunet34c-0-base -n semseg-minkunet34c-0-base

Point Transformers

  • PTv2 mode2 (recommend)

The original PTv2 was trained on 4 * RTX a6000 (48G memory). Even enabling AMP, the memory cost of the original PTv2 is slightly larger than 24G. Considering GPUs with 24G memory are much more accessible, I tuned the PTv2 on the latest Pointcept and made it runnable on 4 * RTX 3090 machines.

PTv2 Mode2 enables AMP and disables Position Encoding Multiplier & Grouped Linear. During our further research, we found that precise coordinates are not necessary for point cloud understanding (Replacing precise coordinates with grid coordinates doesn't influence the performance. Also, SparseUNet is an example). As for Grouped Linear, my implementation of Grouped Linear seems to cost more memory than the Linear layer provided by PyTorch. Benefiting from the codebase and better parameter tuning, we also relieve the overfitting problem. The reproducing performance is even better than the results reported in our paper.

Example running script is as follows:

# ptv2m2: PTv2 mode2, disable PEM & Grouped Linear, GPU memory cost < 24G (recommend)
# ScanNet
sh scripts/train.sh -g 4 -d scannet -c semseg-pt-v2m2-0-base -n semseg-pt-v2m2-0-base
# ScanNet test benchmark (train on train set and val set)
sh scripts/train.sh -g 4 -d scannet -c semseg-pt-v2m2-1-benchmark-submit -n semseg-pt-v2m2-1-benchmark-submit
# ScanNet200
sh scripts/train.sh -g 4 -d scannet200 -c semseg-pt-v2m2-0-base -n semseg-pt-v2m2-0-base
# S3DIS
sh scripts/train.sh -g 4 -d s3dis -c semseg-pt-v2m2-0-base -n semseg-pt-v2m2-0-base
  • PTv2 mode1

PTv2 mode1 is the original PTv2 we reported in our paper, example running script is as follows:

# ptv2m1: PTv2 mode1, Original PTv2, GPU memory cost > 24G
# ScanNet
sh scripts/train.sh -g 4 -d scannet -c semseg-pt-v2m1-0-base -n semseg-pt-v2m1-0-base
# ScanNet200
sh scripts/train.sh -g 4 -d scannet200 -c semseg-pt-v2m1-0-base -n semseg-pt-v2m1-0-base
# S3DIS
sh scripts/train.sh -g 4 -d s3dis -c semseg-pt-v2m1-0-base -n semseg-pt-v2m1-0-base
  • PTv1

The original PTv1 is also available in our Pointcept codebase. I haven't run PTv1 for a long time, but I have ensured that the example running script works well.

# ScanNet
sh scripts/train.sh -g 4 -d scannet -c semseg-pt-v1-0-base -n semseg-pt-v1-0-base
# ScanNet200
sh scripts/train.sh -g 4 -d scannet200 -c semseg-pt-v1-0-base -n semseg-pt-v1-0-base
# S3DIS
sh scripts/train.sh -g 4 -d s3dis -c semseg-pt-v1-0-base -n semseg-pt-v1-0-base

Stratified Transformer

  1. Build dependance:
pip install torch-points3d
# fix dependence, caused by install torch-points3d 
pip uninstall SharedArray
pip install SharedArray==3.2.1

cd libs/pointops2
python setup.py install
cd ../..
  1. Uncomment # from .stratified_transformer import * in pointcept/models/__init__.py.
  2. Refer Optional Installation to install dependence.
  3. Training with the following example scripts:
# stv1m1: Stratified Transformer mode1, Modified from the original Stratified Transformer code.
# PTv2m2: Stratified Transformer mode2, My rewrite version (recommend).

# ScanNet
sh scripts/train.sh -g 4 -d scannet -c semseg-st-v1m2-0-refined -n semseg-st-v1m2-0-refined
sh scripts/train.sh -g 4 -d scannet -c semseg-st-v1m1-0-origin -n semseg-st-v1m1-0-origin
# ScanNet200
sh scripts/train.sh -g 4 -d scannet200 -c semseg-st-v1m2-0-refined -n semseg-st-v1m2-0-refined
# S3DIS
sh scripts/train.sh -g 4 -d s3dis -c semseg-st-v1m2-0-refined -n semseg-st-v1m2-0-refined

I did not tune the parameters for Stratified Transformer and just ensured it could run.

SPVCNN

SPVCNN is baseline model of SPVNAS, it is also a practical baseline for outdoor dataset.

  1. Install torchsparse:
# refer https://github.com/mit-han-lab/torchsparse
# install method without sudo apt install
conda install google-sparsehash -c bioconda
export C_INCLUDE_PATH=${CONDA_PREFIX}/include:$C_INCLUDE_PATH
export CPLUS_INCLUDE_PATH=${CONDA_PREFIX}/include:CPLUS_INCLUDE_PATH
pip install --upgrade git+https://github.com/mit-han-lab/torchsparse.git
  1. Training with the following example scripts:
# Semantic-KITTI
sh scripts/train.sh -g 2 -d semantic-kitti -c semseg-spvcnn-v1m1-0-base -n semseg-spvcnn-v1m1-0-base

2. Instance Segmentation

PointGroup

PointGroup is a baseline framework for point cloud instance segmentation.

  1. Build point group library:
conda install -c bioconda google-sparsehash 
cd libs/pointgroup_ops
python setup.py build_ext --include-dirs=YOUR_ENV_PATH/include
python setup.py install
cd ../..
  1. Uncomment # from .point_group import * in pointcept/models/__init__.py.
  2. Training with the following example scripts:
# ScanNet
sh scripts/train.sh -g 4 -d scannet -c insseg-pointgroup-v1m1-0-spunet-base -n insseg-pointgroup-v1m1-0-spunet-base
# S3DIS
sh scripts/train.sh -g 4 -d scannet -c insseg-pointgroup-v1m1-0-spunet-base -n insseg-pointgroup-v1m1-0-spunet-base

Citation

If you find Pointcept useful to your research, please cite our work:

@misc{pointcept2023,
    title={Pointcept: A Codebase for Point Cloud Perception Research},
    author={Pointcept Contributors},
    howpublished = {\url{https://github.com/Pointcept/Pointcept}},
    year={2023}
}

Acknowledgement

Pointcept is designed by Xiaoyang, named by Yixing and the logo is created by Yuechen. It is derived from Hengshuang's Semseg and inspirited by several repos, e.g., MinkowskiEngine, pointnet2, mmcv, and Detectron2.

About

Pointcept: a codebase for point cloud perception research. Latest works: MSC (CVPR'23), CeCo (CVPR'23), PTv2 (NeurIPS'22)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 83.4%
  • Cuda 9.4%
  • C++ 6.9%
  • Shell 0.3%