This is the implementation of Mixed-TD: Efficient Neural Network Accelerator with Layer-Specific Tensor Decomposition.
Mixed-TD is a framework that maps CNNs onto FPGAs based on a novel tensor decomposition method. The proposed method applies layer-specific Singular Value Decomposition (SVD) and Canonical Polyadic Decomposition (CPD) in a mixed manner, achieving 1.73x to 10.29x throughput per DSP compared to state-of-the-art accelerators.
git submodule update --init --recursive
conda create -n mixed-td python=3.10
conda activate mixed-td
pip install -r requirements.txt
export FPGACONVNET_OPTIMISER=~/Mixed-TD/fpgaconvnet-optimiser
export FPGACONVNET_MODEL=~/Mixed-TD/fpgaconvnet-optimiser/fpgaconvnet-model
export PYTHONPATH=$PYTHONPATH:$FPGACONVNET_OPTIMISER:$FPGACONVNET_MODEL
python search.py --gpu 0
todo
@article{yu2023mixed,
title={Mixed-TD: Efficient Neural Network Accelerator with Layer-Specific Tensor Decomposition},
author={Yu, Zhewen and Bouganis, Christos-Savvas},
journal={arXiv preprint arXiv:2306.05021},
year={2023}
}