Tasks
: focuse on exploring new algorithms and their applications, pay attention to the portability and interpretability of code, and do not need to package in advance
format of submitting
:
- images file: store pictures obtained from code running or pictures for external loading
- code: with the suffix of ipynb or py, ipynb is highly recommended
- readme.txt: author and the functions of codes are needed
Current Codes
:
- Linear and Polylinear Regression
- Dimensionality Reduction
- Ensemble Learning
- Clustering (KMeans、AP、GaussianMixture)
- Stratified Sampling
- Deep Neutral Network
- Support Vector Machine
任务
:以探索新算法及其应用为主,注重代码的可移植性和可解释性,不需要提前封装
上传格式
- images文件夹:存放代码运行获得的图片或用于外部加载的图片
- 代码:ipynb or py格式,建议以ipynb为主
- readme.txt:姓名/代码功能
目前已有模型代码
:
- 线性回归+多项式回归
- 降维
- 集成学习
- 聚类(KMeans、AP、GaussianMixture)
- 分层抽样
- 神经网络